Reception

Arithmetic

Workbook

by Richard Brown

Contents Page

Add

1 More Than 1-2

To 5 3-4
To 10 5-6
To 15 7-8
To 20 9- 10
Multiples of 1 11-12
Multiples of 2 13-14
Multiples of 3
15-16
Multiples of $4 \quad 17-18$
Multiple Numbers 19-20
Subtract
1 Less Than 21-22
From 5 23-24
From 10 25-26
From 15 27-28
From 20 29-30
Multiples of 1 31-32
Multiples of 2 33-34
Multiples of 3 35-36
Multiples of 4 37-38
Multiple Numbers 39-40
$\begin{aligned} & \text { Multiply } \\ & \text { Doubling }\end{aligned} \quad 41-42$

Divide

Sharing
43-44

Fractions
Halving 45-46

Answers and Glossary 47-53

Key Language and Representations

Word Problems are the arithmetic number sentences written in a real-life reasoning and problem solving scenario. e.g. $2+1=3$

Strategy Applied refers to when a formal written method is used to calculate a number sentence e.g. $20-5=15$. Explained using appropriate mathematical language, proven using concrete objects that can be handled, shown with pictorial representations visualising the calculations, to ensure a greater understanding of a mathematical concept.

Concrete Objects are manipulated or handled to calculate and represent a number sentence i.e. multilink cubes, numicon, counters, number line. e.g. $2+3=5$ \square
Number Lines are used to count forwards e.g. $0,1,2,3,4,5$ and also to count backwards e.g. $10,9,8,7,6,5$.

0	1	2	3	4	5	6	7	8	9

Part Whole Models are pictorial mathematical images to represent varied calculations and number sentences.
e.g. $2+3=$? 5

Bar Models are an image, that pictorially represents a number sentence.

e.g. $2+8=? 10$	
2	8
+10	

Number Grid

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109
110	111	112	113	114	115	116	117	118	119
120	121	122	123	124	125	126	127	128	129
130	131	132	133	134	135	136	137	138	139
140	141	142	143	144	145	146	147	148	149
150	151	152	153	154	155	156	157	158	159

Multiplication Square

x	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0
1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100
11	22	33	44	55	66	77	88	99	110
12	24	36	48	60	72	84	96	108	120

$\underline{1 \text { More Than }}$

1) $2+1=?$

Word Problem

Aamilah has two green blocks and Ameera has one blue block.
They put together all their blocks .
How many blocks do they have altogether?

Concrete Object

Strategy Applied

First, pick up two objects and place them together.
Now count aloud to check there are only two objects; one, two.

Then, pick up one more object and place it next to the two objects.
Next, count how many objects there are altogether.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two, three.

Finally, two add one equals three.

Part Whole Model

Bar Model

Test Questions

1) $2+1=$ \qquad
2) $5+1=$ \qquad
3) $0+1=$ \qquad 9) $7+1=$ \qquad
4) $4+1=$ \qquad 10) $9+1=$
5) $12+1=$
\qquad
6) $6+1=$ \qquad
7) $8+1=$
8) $14+1=$ \qquad
9) $1+1=$ \qquad 13) $17+1=$ \qquad
10) $3+1=$ \qquad

To 5

1) $2+3=$?

Word Problem

Jaylon is playing with two toys and Nia is playing with three toys. They put together all the toys.
How many toys do they have altogether?

Concrete Object

Strategy Applied

First, pick up two objects and place them together.
Now count aloud to check there are only two objects; one, two.
Then, pick up three more objects and place it next to the two objects.

Next, count how many objects there are altogether.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two, three, four, five.

Finally, two add three equals five.

Part Whole Model

Bar Model

Test Questions

1) $2+3=$ \qquad 8)
2) $0+5=$ \qquad 9) $\quad=4+1$
3) $4+1=$ \qquad 10)__ $=5+0$
4) $5+0=$ \qquad 11) $\quad=3+2$
5) $3+2=$ \qquad 12) __ $=1+4$
6) $1+4=$
\qquad
7) \qquad $=2+3$
\qquad
8) $\ldots=0+5$ _
, +0
9) __ $=1+4$
10) $\quad=5+0$

Page 4

To 10

1) $7+3=?$

Word Problem

Mason has seven cars and Kylo has three cars.
They put together all of the cars and line them up.
How many cars do they have altogether?

Concrete Object

Strategy Applied

First, pick up seven objects and place them together.
Now count aloud to check there are only seven objects; one, two, three, four, five, six, seven.

Then, pick up three more objects and place it next to the seven objects.

Next, count how many objects there are altogether.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two, three, four, five, six, seven, eight, nine, ten.

Finally, seven add three equals ten.

Part Whole Model

Bar Model

Test Questions

1) $7+3=$ \qquad
2) $8+2=$ \qquad
3) $10+0=$ \qquad
4) $5+5=$ \qquad
5) $6+4=$ \qquad 10) $3+7=$ \qquad
6) $4+6=$ \qquad 11) $1+9=$ \qquad
7) $2+8=$ \qquad 12) __ $=2+8$
8) $0+10=$ \qquad
9) \qquad $=3+7$
10) $9+1=$ \qquad

To 15

1) $12+3=?$

Word Problem

Darren has twelve coins and his cousin Kyle gives him three more coins. How many coins does he have altogether?

Concrete Object

Next

Finally

$$
12+3=15
$$

Strategy Applied

First, pick up twelve objects and place them together.
Now count aloud to check there are only twelve objects; one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve.

Then, pick up three more objects and place it next to the twelve objects.

Next, count how many objects there are altogether.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen.

Finally, twelve add three equals fifteen.

Part Whole Model

Bar Model

Test Questions

1) $12+3=$ \qquad 8) $1+14=$ \qquad
2) $15+0=$ \qquad 9) $14+1=$
3) $13+2=$ \qquad
4) $9+6=$
\qquad 11) $10+5=$
\qquad
5) $11+4=$ \qquad
6) $7+8=$ \qquad
7) $8+7=$ \qquad
8) $5+10=$ \qquad
9) $6+9=$ \qquad
10) $3+12=$ \qquad

To 20

1) $15+5=?$

Word Problem

Malachi has fifteen blocks and Tiheria has five blocks.
They put together all of the blocks.
How many blocks do they have altogether?

Concrete Object

First

Then

Next

Finally

$$
15+5=20
$$

Strategy Applied

First, pick up fifteen objects and place them together.
Now count aloud to check there are only fifteen objects; $1,2,3,4,5,6,7$, $8,9,10,11,12,13,14,15$.

Then, pick up five more objects and place it next to the fifteen objects.

Next, count how many objects there are altogether.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty.

Finally, fifteen add five equals twenty.
$+5$

Part Whole Model

Bar Model

Test Questions

1) $15+5=$ \qquad
2) $17+3=$ \qquad
3) $12+8=$ \qquad
4) $10+10=$
5) $14+6=$ \qquad 10) $13+7=$ \qquad
6) $16+4=$ \qquad 11) $11+9=$ \qquad
7) $18+2=$ \qquad
8) $9+11=$ \qquad
9) $20+0=$ \qquad
10) $8+12=$ \qquad
11) $19+1=$ \qquad

Multiples of 1

In the number pattern below, find the next two missing numbers.

1) $0,1,2$, ? ?

Word Problem

Mya uses cubes to make the number pattern of zero, one and two. She calculates the next two missing numbers in the number pattern. How many cubes will she need, to make the next two numbers?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule.

First, count forwards from zero to one equalling one, the rule is +1 .

Then, count forwards from one to two equalling one, the rule is +1 .

The rule is +1 , count on one from each of the numbers in the number pattern,
Continue this number pattern to find the next two missing numbers.

Next, find two on the number line and count on one more, total is three.

Then, find three on the number line and count on one more, total is four.
Finally, the next two missing numbers in the number pattern are three and four.

Number Line

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Test Questions

In each number pattern, find the next two missing numbers.

1) $0,1,2$, \qquad ,
2) $7,8,9$, \qquad
3) 1, 2, 3, \qquad
4) $2,3,4$, \qquad
5) $3,4,5$, \qquad
6) $4,5,6$, \qquad 12) $11,12,13$, \qquad
7) $5,6,7, \ldots$,
\qquad 13) $12,13,14$, \qquad
8) 6, 7, 8, \qquad
9) $8,9,10$, \qquad
10) $9,10,11$, \qquad
11) $10,11,12$, \qquad
12) $15,16,17$, \qquad

Multiples of 2

In the number pattern below, find the next two missing numbers.

1) $0,2,4, ?, ?$

Word Problem

The numbers on a number line go up by the same amount each time. The number pattern is zero, two and four.
What will the next two numbers be in the number pattern?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule.

First, count forwards from zero to two equalling two, the rule is +2 .

Then, count forwards from two to four equalling two, the rule is +2 .

The rule is +2 , count on two from each of the numbers in the number pattern.

Continue this number pattern to find the next two missing numbers.

Next, find four on the number line and count on two more, total is six.

Then, find six on the number line and count on two more, total is eight.

Finally, the next two missing numbers in the number pattern are six and eight.

Number Line

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Test Questions

In each number pattern, find the next two missing numbers.

1) $0,2,4$, \qquad 8) $5,7,9$, \qquad
2) 2,4 , 6, \qquad 9) 7, 9, 11, \qquad
3) $4,6,8$, \qquad 10) 9, 11, 13, \qquad
4) $6,8,10$, \qquad 11) $11,13,15$, \qquad
5) $12,14,16$, \qquad 12) $13,15,17$, \qquad
6) $1,3,5$, \qquad 13) 0,2 , 4, \qquad
7) 3, 5, 7, \qquad
8) $10,12,14$, \qquad

Multiples of 3

In the number pattern below, find the next two missing numbers.

1) $0,3,6$, ? ?

Word Problem

Cameron uses counters to make the number pattern of zero, three and six He calculates the next two missing numbers in the number pattern. How many counters will he need, to make the next two numbers?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule.

First, count forwards from zero to three equalling three, the rule is +3 .

Then, count forwards from three to six equalling three, the rule is +3 .

The rule is +3 , count on three from each of the numbers in the number pattern.
Continue this number pattern to find the next two missing numbers.

Next, find six on the number line and count on three more, total is nine.

Then, find nine on the number line and count on three more, total is twelve.

Finally, the next two missing numbers in the number pattern are nine and twelve.

Number Line

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Test Questions

In each number pattern, find the next two missing numbers.

1) $0,3,6$, \qquad 8) $5,8,11$, \qquad
2) $3,6,9$, \qquad 9) $7,10,13$, \qquad
3) $6,9,12$, \qquad 10) $8,11,14$, \qquad
4) $9,12,15$, \qquad 11) $0,3,6$, \qquad
5) $1,4,7$, \qquad 12) $3,6,9$, \qquad
6) $2,5,8$, \qquad 13) $6,9,12$, \qquad
7) 4, 7, 10, \qquad 14) $9,12,15$, \qquad

Multiples of 4

In the number pattern below, find the next two missing numbers.

1) $0,4,8, ?, ?$

Word Problem

Corey uses objects to make the number pattern of zero, four and eight. He calculates the next two missing numbers in the number pattern. How many counters will he need, to make the next two numbers?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule.

First, count forwards from zero to four equalling four, the rule is +4 .

Then, count forwards from four to eight equalling four, the rule is +4 .

The rule is +4 , count on four from each of the numbers in the number pattern.
Continue this number pattern to find the next two missing numbers.

Next, find eight on the number line and count on four more, total is twelve.

Then, find twelve on the number line and count on four more, total is sixteen.

Finally, the next two missing numbers in the number pattern are twelve and sixteen.

Number Line

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Test Questions

In each number pattern, find the next two missing numbers.

1) $0,4,8$, \qquad 8) $7,11,15$, \qquad
2) $4,8,12$, \qquad 9) $0,4,8$, \qquad
3) $8,12,14$, \qquad 10) $4,8,12$, \qquad
4) $1,5,9$, \qquad
5) $8,12,14$, \qquad
6) $2,6,10$, \qquad 12) $1,5,9$, \qquad
7) $3,7,11$, \qquad 13) $2,6,10$, \qquad
8) 5, 9, 13, \qquad 14) $3,7,11$, \qquad

Multiple Numbers

1) $1+2+3=?$

Word Problem

Rachel is looking at her toys, one ball, two dolls and three dinosaurs.
She puts together all of her toys.
How many toys does she have altogether?

Concrete Object

Strategy Applied

First, pick up one object and place it down.
Now count aloud to check there is only one object; one.
Then, pick up two more objects and place it next to the one object.
Next, pick up three more objects and place it next to the one and two objects.

Then, count how many objects there are altogether.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two, three, four, five, six.

Finally, one add two add three equals six.

Part Whole Model

Bar Model

Test Questions
8) $8+1+4=$ \qquad
2) $2+1+4=$
9) $9+2+5=$
3) $3+4+2=$ \qquad 10) $10+3+0=$ \qquad
4) $4+1+0=$ \qquad
5) $5+2+1=$
6) $6+3+2=$
13) $13+5+1=$
14) $14+1+3=$ \qquad

1 Less Than

1) $6-1=?$

Word Problem

Loren has six gel pens.
Eliza has one gel pen fewer than her.
How many gel pens does Loren have in total?

Concrete Object

Strategy Applied

First, pick up six objects and place them together.
Now count aloud to check there are only six objects; one, two, three, four, five, six.

Then, pick up one of the objects and take it away, placing it elsewhere.

Next, count altogether how many objects are left.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two, three, four, five.

Finally, six take away one equals five.

Part Whole Model

Bar Model

Test Questions

1) $6-1=$ \qquad
2) $2-1=$ \qquad
3) $8-1=$ \qquad
4) $4-1=$ \qquad
5) $10-1=$
6) $12-1=$ \qquad
7) $14-1=$ \qquad
8) $16-1=$ \qquad
9) $18-1=$ \qquad
10) $20-1=$
\qquad
11) $19-1=$ \qquad
12) $17-1=$ \qquad
13) $15-1=$ \qquad

14) $13-1=$ \qquad

From 5

1) $5-3=?$

Word Problem

James has five dinosaur books.
Mica has three books fewer than him.
How many books does Mica have?

Concrete Object

Strategy Applied

First, pick up five objects and place them together.
Now count aloud to check there are only five objects; one, two, three, four, five.

Then, pick up three of the objects and take them away, placing them elsewhere.

Next, count altogether how many objects are left.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two.

Finally, five take away three equals two.

Part Whole Model

Bar Model

Test Questions
8)
9)
10)__ $=5-0$
11)__ $=5-2$
5) $5-2=$ \qquad 12)__ $=5-4$
6) $5-4=$ \qquad 13)
14)__ $=5-0$

From 10

1) $10-1=?$

Word Problem

Kavalli has ten pieces of fruit in a bowl.
He hands out one of them.
How many pieces of fruit remain in the bowl?

Concrete Object

First
Then
Next

Finally

$$
10-1=9
$$

Strategy Applied

First, pick up ten objects and place them together.
Now count aloud to check there are only ten objects; $1,2,3,4,5,6,7,8$, 9, 10.

Then, pick up one of the objects and take it away, placing it elsewhere.

Next, count altogether how many objects are left.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two, three, four, five, six, seven, eight, nine.

Finally, ten take away one equals nine.

Part Whole Model

Bar Model

Test Questions

1) $10-1=$ \qquad 8) $10-4=$ \qquad
2) $10-3=$ \qquad
3) $10-6=$ \qquad
4) $10-5=$ \qquad 10) $10-8=$ \qquad
5) $10-7=$ \qquad 11) $10-10=$ \qquad
6) $10-9=$
7) __ $=10-0$
8) $10-0=$ \qquad 13) $\quad=10-8$
9) $10-2=$ \qquad

From 15

1) $15-3=?$

Word Problem

Arron is thinking of a number that is three less than fifteen. What number is he thinking of?

Concrete Object

Strategy Applied

First, pick up fifteen objects and place them together.
Now count aloud to check there are only fifteen objects; $1,2,3,4,5,6,7$, $8,9,10,11,12,13,14,15$.

Then, pick up three of the objects and take them away, placing elsewhere.

Next, count altogether how many objects are left.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve.

Finally, fifteen take away three equals twelve.

Part Whole Model

Bar Model

Test Questions

1) $15-3=$ \qquad
2) $15-4=$ \qquad
3) $15-5=$ \qquad 9) $15-6=$ \qquad
4) $15-1=$ \qquad 10) $15-8=$ \qquad
5) $15-7=$ \qquad
6) $15-10=$ \qquad
7) $15-9=$
8) $15-11=$ \qquad
9) $15-0=$ \qquad 13) $15-13=$ \qquad
10) $15-2=$ \qquad

From 20

1) $20-5=?$

Word Problem

Twenty children are sat down on the carpet in class.
Five children go out for guided reading.
How many children are left, sat down on the carpet?

Concrete Object

Strategy Applied

First, pick up twenty objects and place them together.
Now count aloud to check there are only twenty objects; $1,2,3,4,5,6,7$, $8,9,10,11,12,13,14,15,16,17,18,19,20$.

Then, pick up five of the objects and take them away, placing elsewhere.

Next, count altogether how many objects are left.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen.

Finally, twenty take away five equals fifteen.

Part Whole Model

Bar Model

Test Questions

1) $20-5=$ \qquad
2) $20-4=$ \qquad
3) $20-1=$ \qquad 9) $20-6=$ \qquad
4) $20-7=$
5) $20-3=$ \qquad
6) $20-9=$ \qquad
7) $20-8=$ \qquad
8) $20-10=$ \qquad
9) $20-12=$ \qquad
10) $20-0=$
11) $20-2=$ \qquad
12) $20-15=$ \qquad
13) $20-19=$ \qquad

Multiples of 1

In the number pattern below, find the next two missing numbers.

1) $7,6,5, ?$?

Word Problem

The numbers seven, six and five are written on part of a number line.
Missing of the number line, are the two numbers written before.
What are the two missing numbers?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule.

First, count backwards from seven to six equalling one, the rule is -1 .

Then, count backwards from six to five equalling one, the rule is -1 .

The rule is -1 , count back one from each of the numbers in the number pattern.

Continue this number pattern to find the next two missing numbers.

Next, find five on the number line and count back one less, total is four.

Then, find four on the number line and count back one less, total is three.

Finally, the next two missing numbers in the number pattern are four and three.

Number Line

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Test Questions

In each number pattern, find the next two missing numbers.

1) $7,6,5$, \qquad 8) $14,13,12$, \qquad
2) $8,7,6$, \qquad 9) $15,14,13$, \qquad
3) $9,8,7$, \qquad 10) $16,15,14$, \qquad
4) $10,9,8$, \qquad 11) $17,16,15$, \qquad
5) $11,10,9$, \qquad 12) $18,17,16$, \qquad
6) $12,11,10$, \qquad 13) $19,18,17$, \qquad
7) $13,12,11$, \qquad 14) $20,19,18$, \qquad

Multiples of 2

In the number pattern below, find the next two missing numbers.

1) $8,6,4$, ? ?

Word Problem

Numbers on a number line go back by the same amount each time. Eight, six and four are the numbers on the number line. What will the two numbers be on the number line before?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule.

First, count backwards from eight to six equalling two, the rule is -2 .

Then, count backwards from six to four equalling two, the rule is $\mathbf{- 2}$.

The rule is -2 , count back two from each of the numbers in the number pattern.
Continue this number pattern to find the next two missing numbers.

Next, find four on the number line and count back two less, total is two.

Then, find two on the number line and count back two less, total is zero.

Finally, the next two missing numbers in the number pattern are two and zero.

Number Line

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Test Questions

In each number pattern, find the next two missing numbers.

1) $8,6,4, \ldots$
2) $10,8,6$, \qquad
3) $12,10,8$, \qquad 10) $15,13,11$, \qquad
4) $14,12,10$, \qquad
5) $16,14,12$, \qquad
6) $18,16,14$, \qquad 13) 9, 7, 5, \qquad
7) $20,18,16$, \qquad
8) $19,17,15$, \qquad
9) $17,15,13$, \qquad
10) 13, 11, 9, \qquad
11) $11,9,7$, \qquad
12) $10,8,6$, \qquad

Multiples of 3

In the number pattern below, find the next two missing numbers.

1) $12,9,6$? ? ?

Word Problem

Twelve, nine and six are numbers on labels.
The next two labels continue the same number pattern.
What are the next two numbers on the labels?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule.

First, count backwards from twelve to nine equalling three, the rule is -3 .
Then, count backwards from nine to six equalling three, the rule is -3 .

The rule is -3 , count back three from each of the numbers in the number pattern.
Continue this number pattern to find the next two missing numbers.
Next, find six on the number line and count back three less, total is three.

Then, find three on the number line and count back three less, total is zero

Finally, the next two missing numbers in the number pattern are three and zero.

Number Line

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Test Questions

In each number pattern, find the next two missing numbers.

1) $12,9,6$, \qquad
2) $15,12,9$, \qquad
3) $18,15,12$, \qquad
4) $21,18,15$, \qquad
5) $20,17,14$, \qquad
6) $19,16,13$, \qquad 13) $15,12,9$, \qquad
7) $17,14,11$, \qquad
8) $16,13,10$, \qquad
9) $14,11,8$, \qquad
10) $13,10,7$, \qquad
11) $21,18,15$, \qquad
12) $18,15,12$, \qquad
13) $12,9,6$, \qquad

Multiples of 4

In the number pattern below, find the next two missing numbers.

1) $16,12,8, ?$?

Word Problem

Sixteen, twelve and eight are numbers on cards.
The next two cards continue the same number pattern.
What are the next two numbers on the cards?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule.

First, count backwards from sixteen to twelve equalling four, the rule is -4 .

Then, count backwards from twelve to eight equalling four, the rule is -4 .

The rule is -4 , count back four from each of the numbers in the number pattern.
Continue this number pattern to find the next two missing numbers.

Next, find eight on the number line and count back four less, total is four. Then, find four on the number line and count back four less, total is zero.

Finally, the next two missing numbers in the number pattern are four and zero.

Number Line

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Test Questions

In each number pattern, find the next two missing numbers.

1) $16,12,8, \ldots$,
2) $20,16,12$, \qquad
3) $24,20,16$, \qquad
4) $23,19,15$, \qquad
5) $22,18,14$, \qquad 12) $16,12,8$, \qquad
6) $21,17,13$, \qquad 13) $23,19,15$, \qquad
7) $19,15,11$, \qquad
8) $18,14,10$, \qquad
9) $17,13,9$, \qquad
10) $24,20,16$, \qquad
11) $20,16,12$, \qquad
12) $22,18,14$, \qquad

Multiple Numbers

1) $7-1-4=?$

Word Problem

There are seven bananas in a fruit bowl on Sunday.
On Monday one banana is eaten. On Tuesday four more bananas are eaten. How many bananas are now left?

Concrete Object

Strategy Applied

First, pick up seven objects and place them together.
Now count aloud to check there are only seven objects; one, two, three, four, five, six, seven.

Then, pick up one of the objects and take it away, placing it elsewhere.
Next, pick up four of the objects and take it away, placing it elsewhere.
Then, count altogether how many objects are left.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two.

Finally, six take away one take away four equals five.

Part Whole Model

Bar Model

Test Questions

1) $7-1-4=$
2) $8-2-3=$
3) $9-3-4=$ \qquad
4) $10-4-0=$ \qquad
5) $11-5-1=$
6) $12-0-2=$ \qquad
7) $13-1-3=$ \qquad
8) $14-2-4=$
9) $15-3-5=$
10) $16-4-0=$ \qquad
11) $17-5-3=$ \qquad
12) $18-0-2=$
13) $19-1-4=$ \qquad
14) $20-2-5=$ \qquad

Doubling

1) $1+1=?$

Word Problem

Josh and Sam both have the same number of apples, one each.
They count how many apples they have.
Altogether, how many apples do you think they have?

Concrete Object

$$
\begin{aligned}
& \text { First Then Next Finally } \\
& \begin{array}{|l|l|l|l|}
\hline 1 & \rightarrow & 1 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Strategy Applied

First, pick up one object and place it down.
Now count aloud to check there is only one object; one.

Then, pick up one more object and place it next to the one object.
Next, count how many objects there are altogether.
Whilst touching each object count forwards aloud in number order, saying one number name per object; one, two.

Finally, double one equals two.

Part Whole Model

Bar Model

Test Questions

1) $1+1=$ \qquad
2) $9+9=$ \qquad
3) $2+2=$ \qquad 9) $8+8=$ \qquad
4) $3+3=$ \qquad 10) $7+7=$ \qquad
5) $4+4=$ \qquad 11) $6+6=$ \qquad
6) $5+5=$
7) $\quad=2+2$
8) $10+10=$ \qquad
9) \qquad $=5+5$
10) $0+0=$ \qquad

Sharing

1) $4 \div 2=?$

Word Problem

Four toy cars are shared between two children, Laylah and Soul.
Each child will have the same number of toy cars.
How many toy cars does each child have?

Concrete Object

Strategy Applied

First, pick up four objects and place them together.
Now count them aloud to check there are only four objects; one, two, three, four.

Then, share the four objects one at a time equally between two groups.
Next, count how many objects there are altogether in each group, there should be two objects in each group; one, two.

Finally, four shared between two equals two.

Part Whole Model

Test Questions

1) $4 \div 2=$ \qquad
2) $6 \div 2=$ \qquad
3) $4 \div 2 \div$
4) $8 \div 2=$ \qquad
5) $10 \div 2=$ \qquad
6) $12 \div 2=$ \qquad
7) $14 \div 2=$ _
\qquad
\qquad
8) $16 \div 2=$ \qquad

9) $18 \div 2=$
10) $20 \div 2=$ \qquad
11) $2 \div 2=$ \qquad
12) $=20 \div 2$
13)
14) $=8 \div 2$
15) $=4 \div 2$

Halving

1) $\frac{1}{2}$ of $2=?$

Word Problem

Tanisha and Kamal equally share two oranges between the two of them.
Both of them have the same number of oranges.
How many oranges will one of them have?

Concrete Object

First
Then
Next
Finally

Strategy Applied

First, pick up two objects and place them together.
Now count aloud to check there are only two objects; one, two.

Then, share the two objects one at a time equally between two groups, until exactly the same quantity of objects are in each of the groups.

Next, count how many objects there are altogether in one group, there should be one object; one.

Finally, one half of two equals one.

Part Whole Model

Bar Model

Test Questions

1) $\frac{1}{2}$ of $2=$
2) $\frac{1}{2}$ of $4=$
3) $\frac{1}{2}$ of $6=$
4) $\frac{1}{2}$ of $8=$
5) $\frac{1}{2}$ of $10=$
6) $\frac{1}{2}$ of $12=$
7) $\frac{1}{2}$ of $14=$
8) $\frac{1}{2}$ of $16=$
9) Half of $18=$ \qquad
10) Half of $20=$ \qquad

Answers

P. 2	P. 4	P. 6	P. 8	P. 10	P. 12
1) 3	1) 5	1) 10	1) 15	1) 20	1) 3,4
2) 1	2) 5	2) 10	2) 15	2) 20	2) 4,5
3) 5	3) 5	3) 10	3) 15	3) 20	3) 5,6
4) 7	4) 5	4) 10	4) 15	4) 20	4) 6,7
5) 9	5) 5	5) 10	5) 15	5) 20	5) 7,8
6) 2	6) 5	6) 10	6) 15	6) 20	6) 8,9
7) 4	7) 5	7) 10	7) 15	7) 20	7) 9,10
8) 6	8) 5	8) 10	8) 15	8) 20	8) 10,11
9) 8	9) 5	9) 10	9) 15	9) 20	9) 11,12
10) 10	10) 5	10) 10	10) 15	10) 20	10) 12,13
11) 13	11) 5	11) 10	11) 15	11) 20	11) 13,14
12) 15	12) 5	12) 10	12) 15	12) 20	12) 14,15
13) 18	13) 5	13) 10	13) 15	13) 20	13) 15,16
14) 20	14) 5	14) 10	14) 15	14) 20	14) 18,19

P. $\mathbf{1 4}$	$\underline{\text { P. } \mathbf{1 6}}$		P. $\mathbf{P 8}$		P. $\mathbf{P 0}$	
P. $\mathbf{P 2}$		$\underline{\text { P. } \mathbf{2 4}}$				
1) 6,8	1) 9,12	1) 12,16		1) 6		1) 5

Answers

P. 26	P. 28	P. 30	P. 32	P. 34	P. 36
1) 9	1) 12	1) 15	1) 4,3	1) 2,0	1) 3,0
2) 7	2) 10	2) 19	2) 5,4	2) 4,2	2) 6,3
3) 5	3) 14	3) 13	3) 6,5	3) 6,4	3) 9,6
4) 3	4) 8	4) 17	4) 7,6	4) 8,6	4) 12,9
5) 1	5) 6	5) 11	5) 8,7	5) 10,8	5) 11,8
6) 10	6) 15	6) 20	6) 9,8	6) 12,10	6) 10,7
7) 8	7) 13	7) 18	7) 10,9	7) 14,12	7) 8,5
8) 6	8) 11	8) 16	8) 11,10	8) 13,11	8) 7,4
9) 4	9) 9	9) 14	9) 12,11	9) 11,9	9) 5,2
10) 2	10) 7	10) 12	10) 13,12	10) 9,7	10) 4,1
11) 0	11) 5	11) 10	11) 14,13	11) 7,5	11) 12,9
12) 10	12) 4	12) 8	12) 15,14	12) 5,3	12) 9,6
13) 2	13) 2	13) 5	13) 16,15	13) 3,1	13) 6,3
14) 8	14) 0	14) 1	14) 17,16	14) 4,2	14) 3,0

P. 38	P. 40	P. 42	P. 44	P. 46
1) 4,0	1) 2	1) 2	1) 2	1) 1
2) 8,4	2) 3	2) 4	2) 3	2) 2
3) 12,8	3) 2	3) 6	3) 4	3) 3
4) 11,7	4) 6	4) 8	4) 5	4) 4
5) 10,6	5) 5	5) 10	5) 6	5) 5
6) 9,5	6) 10	6) 20	6) 7	6) 6
7) 7,3	7) 9	7) 0	7) 8	7) 7
8) 6,2	8) 8	8) 18	8) 9	8) 8
9) 5,1	9) 7	9) 16	9) 10	9) 9
10) 12,8	10) 12	10) 14	10) 1	10) 10
11) 8,4	11) 9	11) 12	11) 10	
12) 4,0	12) 16	12) 4	12) 5	
13) 11,7	13) 14	13) 10	13) 4	
14) 10,6	14) 13	14) 20	14) 2	

Glossary

Amount is something that has a numerical value, for e.g. 10 cubes
Bar Model is a pictorial representation of a number sentence in the form of bars or boxes used to solve number problems.

Column is a vertical arrangement for example, in a table the cells arranged vertically.

Column Place Value is the value of a digit that relates to its position or place in a number within a column.

Concrete Objects are objects that can be handled and manipulated to support understanding of the structure of a mathematical concept. Materials such as Dienes(Base 10 materials), Cuisenaire, Numicon, are all examples of concrete objects.

Denominator is the number written below the line i.e. the divisor. e.g. in the fraction $2 / 3$ the denominator is 3 .

Digit is one of the symbols of a number system most commonly the symbols $0,1,2,3,4,5,6,7,8$ and 9 . Examples: the number 29 is a 2 -digit number; there are three digits in 2.95 . The position or place of a digit in a number conveys its value.

Digit Value is the value of a digit that relates to its position or place in a number. e.g. in 82 the digits represent 8 tens and 2 ones.

Dividend in division, is the number that is divided. e.g. in $15 \div 3,15$ is the dividend.

Divisor is the number by which another is divided. e.g. In the calculation $30 \div 6=5$, the divisor is 6 . In this example, 30 is the dividend and 5 is the quotient.

Glossary

Efficient Methods A means of calculation (which can be mental or written) that achieves a correct answer with as few steps as possible.
In written calculations this often involves setting out calculations in a columnar layout.

Equals is the symbol: $=$, read as 'is equal to' or 'equals'. and meaning 'having the same value as'. e.g. $7-2=4+1$ since both expressions, $7-2$ and $4+1$ have the same value, 5 .

Expanded Form is a way to break up a number to show the value of each digit (Partition).

Fraction is the result of dividing one integer by a second integer, which must be non- zero. The dividend is the numerator and the non-zero divisor is the denominator. See also decimal fraction, equivalent fraction, improper fraction, proper fraction, unit fraction and vulgar fraction.

Formal Written Method is the way of setting out working in columnar form. In addition and subtraction, the formal written methods can be referred to as expanded and column addition and/or subtraction. In multiplication, the formal written methods are called short or long multiplication depending on the size of the numbers involved. Similarly in division the formal written methods are called short or long division.

Grid a lattice created with two sets of parallel lines. Lines in each set are usually equally spaced. If the sets of lines are at right angles and lines in both sets are equally spaced, a square grid is created.

Hundred Square is a 10 by 10 square grid numbered 1 to 100. A similar grid could be numbered as a $0-99$ grid.

Inverse is the opposite or reverse operation.

Glossary

Mental Calculations refer to calculations that are largely carried out mentally, but may be supported with a few simple written jottings.

Multiple is the result of multiplying a number by an integer, e.g. 12 is a multiple of 3 because $3 \times 4=12$.

Multiplicand is a number to be multiplied by another. e.g. in $6 \times 4,4$ is the multiplier as it is how many lots/groups of 6 .

Multiplier is a number to be multiplied by another.
e.g. in $5 \times 3,5$ is the multiplicand as it is the number to be multiplied by 3 .

Number Bond is a pair of numbers with a particular total.
Number Line is a line where numbers are represented by points upon it.

Number Sentence is a mathematical sentence involving numbers.
e.g. $3+6=9$ and $9>3$

Numerator is the number written on the top- the dividend (the part that is divided). In the fraction $2 / 3$, the numerator is 2 .

Operations that, when they are combined, leave the entity on which they operate unchanged. Examples: addition and subtraction are inverse operations e.g. $5+6-6=5$. Multiplication and division are inverse operations e.g. $6 \times 10 \div 10=6$.

Part Whole Model is a pictorial representation of the relationship between a number or number sentence and its component parts.

Glossary

Partition 1) To separate a set into subsets. 2) To split a number into component parts. e.g. the two-digit number 38 can be partitioned into $30+8$ or $19+19$. 3) A model of division. e.g. $21 \div 7$ is treated as 'how many sevens in 21?'

Pictorial Representations do enable learners to use pictures and images to represent the structure of a mathematical concept.
The pictorial representation may build on the familiarity with concrete objects. e.g. a square to represent a Dienes 'flat' (representing 100). Pupils may interpret pictorial representations provided to them or create a pictorial representation themselves to help solve a mathematical problem.

Place Holder In decimal notation, the zero numeral is used as a place holder to denote the absence of a power of 10 .

Place Value is the value of a digit that relates to its position or place in a number. e.g. in 1482 the digits represent 1 thousand, 4 hundred, 8 tens and 2 ones respectively; in 12.34 the digits represent 1 ten, 2 ones, 3 tenths and 4 hundredths respectively.

Product is the result of multiplying one number by another. e.g. the product of 2 and 3 is 6 since $2 \times 3=6$.

Quotient is the result of a division. e.g. $46 \div 3=151 / 3$ and $151 / 3$ is the quotient of 46 by 3 . Where the operation of division is applied to the set of integers, and the result expressed in integers.
e.g. $46 \div 3=15$ remainder 1 then 15 is the quotient of 46 by 3 and 1 is the remainder.

Glossary

Regrouping is to exchange a number for another of equal value. The process of regrouping is used in some standard compact methods of calculation. e.g.: 'carrying figures/exchanging' in addition, multiplication or division; and 'decomposition' in subtraction.

Remainder in the context of division requiring a whole number answer (quotient), the amount remaining after the operation. e.g. 29 divided by $7=4$ remainder 1 .

Repeated Addition is the process of repeatedly adding the same number or amount. One model for multiplication. e.g. $5+5+5+5=5 \times 4$.

Repeated Subtraction is The process of repeatedly subtracting the same number or amount. One model for division. e.g. 20-5-5-5-5=0 so $20 \div 4=5$ remainder 0 .

Sequence is succession of terms formed according to a rule. There is a definite relation between one term and the next and between each term and its position in the sequence. e.g. $0,4,8,12,16$ etc.

Step Counting is the process of repeatedly adding the same number or amount. One model for multiplication. e.g. $5+10+15+20=5 \times 4$.

Total Value is the sum to a calculation.
Zero in a place value system, a place-holder. e.g. 105

