Year 6

Arithmetic

Workbook

by Richard Brown

Contents Page

Place Value
How Many 1-2
Digit Value 3-4
Add
Compensate 5- 6
More Than 10,000 7-8
Decimals 9- 10
Column Addition 11-12
Column Addition with Decimals 13-14
Subtract
Compensate 15-16
More Than 10,000 17-18
Decimals 19- 20
Column Subtraction 21-22
Column Subtraction with Decimals 23-24
Multiply
Multiples of 10 25-26
Decimals 27-28
x10, x100 and x1,000 29- 30
Short Multiplication 31-32
Short Multiplication with Decimals 33-34
Long Multiplication 35-36
Divide
Multiples of 10 37-38
Decimals 39-40
$\div 10, \div 100$ and $\div 1,000$ 41-42
Short Division 43-46
Short Division with Decimals 47-48
Long Division 49-50

Contents Page

Find The Missing Number
Find The Missing Number 51-52
Balance Equations 53-54
Indices
Add and Subtract Indices 55-56
BIDMAS
BIDMAS 57-58
Percentages
Percentage of a Quantity 59- 60
Fractions
Fraction of a Quantity 61- 62
Add Proper Fractions 63-64
Subtract Proper Fractions 65-66
Add Mixed Fractions 67- 68
Subtract Mixed Fractions 69-70
Multiply Proper Fractions 71-74
Multiply Mixed Fractions 75-76
Divide Proper Fractions 77-78
Coverted to Percentages and Decimals 79-80
Answers and Glossary 81-91

Key Language and Representations

Reasoning Scenarios are the arithmetic test questions applied to a real-life reasoning and problem solving scenario.

Concrete Objects are manipulated or handled to calculate and represent a number sentence i.e. base 10, cuisenaire, fraction tiles, metric rulers, .

Number Lines are used to count forwards and backwards in whole, decimal numbers and fractional numbers.

Formal Written Methods set out working in columnar form.

Ladder Method

Long Division

| 0 | 6 | 7 | r 1 |
| ---: | ---: | ---: | ---: | ---: |
| | 1 | 13 | 15 |

$-\frac{0}{1} 3$
-12
$\begin{array}{r}-14 \\ \hline 1\end{array}$

Grid Method

\mathbf{x}	200	60	7
4	800	240	28

Short Multiplication

$\underline{\text { Short Division }}$

$\begin{array}{r}0 \\ 2 \\ \hline 4^{13} \\ \hline\end{array}$
$4 \longdiv { 0 } \begin{array} { r } { 0 } \\ { 4 ^ { 1 7 } } \\ { \hline } \end{array}$

Strategy Applied is when formal written method is used to calculate an arithmetic question or a reasoning and problem solving scenario. Explained using appropriate mathematical language, proven using concrete objects that can be manipulated, shown with pictorial representations to visualise the calculations, enabling deeper understanding.

Part Whole Models are pictorial mathematical images to represent an arithmetic question or reasoning and problem solving scenario.

Bar Models are an image, that pictorially represents a calculation.

$$
58 \times 6=348
$$

58	58	58	58	58	58
348					

Fraction Tiles

1	1	1	1	1			
8	8	8	8	8	$+$	1	1
:---	:---	:---	:---	:---	:---	:---	:---
8	8						
1		$=$	1	1	1	1	1
:---	:---	:---	:---	:---	1		

1	1	1	1	1	1	1	1	1				
10	10	10	10	10	10	10	10	10	$-$	1	1	1
:---:	:---:	:---:										
10	10	10	$=$	1	1	1	1	1	1			
:---:	:---:	:---:	:---:	:---:	:---:							
10	10	10	10	10	10							

Number Grid

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109
110	111	112	113	114	115	116	117	118	119
120	121	122	123	124	125	126	127	128	129
130	131	132	133	134	135	136	137	138	139
140	141	142	143	144	145	146	147	148	149
150	151	152	153	154	155	156	157	158	159

Multiplication Square

x	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0
1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100
11	22	33	44	55	66	77	88	99	110
12	24	36	48	60	72	84	96	108	120

Decimal Number Grid

0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9
3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9
4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9
5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9
6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9
7.0	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9
8.0	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9
9.0	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9
10.0	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9
11.0	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9
12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9
13.0	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9
14.0	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9
15.0	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9

Fraction Walls

1 Whole																	
1								1									
1				1				1					1				
1		1		1		1		1			1		1		1		
	8	8		8		8		8			8		8		8		
1	1	1	1	1	1	1	1	1		1	1	1	1	1	1		
16	16	16	16	16	16	16	16	16		16	16	16	16	16	16		6

1 Whole									
$\frac{1}{2}$									$\frac{1}{2}$
$\frac{1}{3}$		$\frac{1}{3}$	$\frac{1}{3}$						
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$				

How Many

The number $98,765,432.109$ is made up of how many $\mathbf{1 , 0 0 0 , 0 0 0 s}$ (millions), $\mathbf{1 0 0 , 0 0 0}$ s (hundred thousands), $\mathbf{1 0 , 0 0 0}$ s (ten thousands) and 0.001 s (thousandths)?

1) $98,765,432$. 149

In Maths a number or figure e.g. $98,765,432.109$, is made up of the digits $9,8,7,6,5,4,3,2,1,0$ and 9 .
Each digit has a worth, otherwise known as its place value.
Ninety eight million, seven hundred and sixty five thousand, four hundred and thirty two point one zero nine is a 11-digit number. The digits represent the following column place values the $\mathbf{1 0 , 0 0 0 , 0 0 0 s}$, $1,000,000,100,000 \mathrm{~s}, 10,000 \mathrm{~s}, 1,000 \mathrm{~s}, 10 \mathrm{~s}, 1 \mathrm{~s}, 0.1 \mathrm{~s}, 0.01 \mathrm{~s}$ and 0.001 s .

Place Value Grid

$10,000,000$	$\underline{1,000,000}$	$\underline{100,000}$	$\underline{10,000}$	$\underline{1,000}$	$\underline{100}$	10	1	$\underline{0.1}$	$\underline{0.01}$	$\underline{0.001}$
9	8	7	6	5	4	3	2	1	0	9

Strategy Applied

The number ninety eight million, seven hundred and sixty five thousand, four hundred and thirty two point one zero nine is represented on a Place Value Grid as above.
First, write 9 in the 1000ths column place value, which is also how many thousandths there are in the 1000ths column, 9 thousandths.
Then, write $\mathbf{0}$ in the $\mathbf{1 0 0 t h s}$ column place value, which is also how many hundredths there are in the $\mathbf{1 0 0 t h s}$ column, $\mathbf{0}$ hundredths.

Next, write $\mathbf{1}$ in the $\mathbf{1 0 t h s}$ column place value, which is also how many tenths there are in the 10 ths column, 1 tenths.
Then, write $\mathbf{2}$ in the $\mathbf{1 s}$ column place value, which is also how many ones there are in the 1 s column, 2 ones.
Next, write $\mathbf{3}$ in the $\mathbf{1 0}$ s column place value, which is also how many tens there are in the 10 s column, 3 tens.
Then, write $\mathbf{4}$ in the 100 s column place value, which is also how many hundreds there are in the $\mathbf{1 0 0}$ s column, $\mathbf{4}$ hundreds.
Next, write $\mathbf{5}$ in the $\mathbf{1 , 0 0 0}$ s column place value, which is also how many thousands there are in the $1,000 \mathrm{~s}$ column, 5 thousands.
Then, write $\mathbf{6}$ in the $\mathbf{1 0 , 0 0 0}$ s column place value, which is also how many ten thousands there are in the $\mathbf{1 0 , 0 0 0}$ s column, 6 ten thousands. Next, write $\mathbf{7}$ in the $\mathbf{1 0 0 , 0 0 0}$ s column place value, which is also how many hundred thousands there are in the $\mathbf{1 0 0 , 0 0 0}$ s column, 7 hundred thousands.
Then, write 8 in the $\mathbf{1 , 0 0 0}, \mathbf{0 0 0}$ s column place value, which is also how many millions there are in the $\mathbf{1 , 0 0 0 , 0 0 0}$ solumn, 8 millions.
Next, write 9 in the $\mathbf{1 0 , 0 0 0 , 0 0 0}$ s column place value, which is also how many ten millions there are in the $\mathbf{1 0 , 0 0 0 , 0 0 0}$ s column, 9 ten millions. Finally, there are 8 millions, 7 hundred thousands, 6 ten thousands. and 9 thousandths.

Test Questions

How many $\mathbf{1 , 0 0 0 , 0 0 0 s}$ (millions), $\mathbf{1 0 0 , 0 0 0 s}$ (hundred thousands), $\mathbf{1 0 , 0 0 0 s}$ (ten thousands) and $\mathbf{0 . 0 0 1 s}$ (thousandths) in each number

1)	98,765,432.109	6)	63,537,902.765	
2)	25,124,619.102	7)	71,601,393.432	$=$
3)	36,217,983.213	8)	82,721,548.098	$=$
4)	49,353,774.908	9)	95,834,657.876	$=$
5)	58,406,861.987	10)	96,095,372.065	$=$

Digit Value

What is the digit value of the $\mathbf{1 , 0 0 0 , 0 0 0 s}$ (millions), $\mathbf{1 0 0 , 0 0 0 s}$ (hundredthousands), $\mathbf{1 0 , 0 0 0}$ s (ten thousands) and $\mathbf{0 . 0 0 1 s}$ (thousandths) in the number 98,765,432.109?

1) $98,765,432 \ldots 139$

In Maths a number or figure e.g. $98,765,432.109$, is made up of the digits $9,8,7,6,5,4,3,2,1,0$ and 9 .
Each digit has a worth, otherwise known as its place value.
Ninety eight million, seven hundred and sixty five thousand, four hundred and thirty two point one zero nine is a 11-digit number. The digits represent the following column place values the $\mathbf{1 0 , 0 0 0}, \mathbf{0 0 0}$ s, $1,000,000,100,000 \mathrm{~s}, 10,000 \mathrm{~s}, 1,000 \mathrm{~s}, 10 \mathrm{~s}, 1 \mathrm{~s}, 0.1 \mathrm{~s}, 0.01 \mathrm{~s}$ and 0.001 s .

Place Value Grid

$\underline{10,000,000}$	$1,000,000$	$\underline{100,000}$	$\underline{10,000}$	$\underline{1,000}$	$\underline{100}$	$\underline{10}$	$\underline{1}$	$\underline{0.1}$	$\underline{0.01}$	$\underline{0.001}$
9	8	7	6	5	4	3	2	1	0	9

Strategy Applied

The number ninety eight million, seven hundred and sixty five thousand, four hundred and thirty two point one zero nine is represented on a Place Value Grid as above.
First, in the 1000ths column the value of the digit is calculated by dividing how many thousandths there are, 9 by 1000 ($\mathbf{1 0 0 0 t h s}$ column), which is 0.009 .

Then, in the $\mathbf{1 0 0 t h s}$ column the value of the digit is calculated by dividing how many hundredths there are, $\mathbf{0}$ by 100 ($\mathbf{1 0 0 t h s}$ column), which is $\mathbf{0 . 0 0}$. Next, in the 10ths column the value of the digit is calculated by dividing how many tenths there are, $\mathbf{1}$ by 10 ($\mathbf{1 0 t h s}$ column), which is $\mathbf{0 . 1}$. Then, in the $1 \mathbf{s}$ column the value of the digit is calculated by multiplying how many ones there are, 2 by $1(1 \mathrm{~s}$ column), which is 2 .

Next, in the $\mathbf{1 0 s}$ column the value of the digit is calculated by multiplying how many tens there are, $\mathbf{3}$ by 10 ($\mathbf{1 0 s}$ column), which is $\mathbf{3 0}$.
Then, in the $\mathbf{1 0 0} \mathbf{s}$ column the value of the digit is calculatedby multiplying how many hundreds there are, $\mathbf{4}$ by 100 ($\mathbf{1 0 0 s}$ column), which is $\mathbf{4 0 0}$. Next, in the $1,000 \mathrm{~s}$ column the value of the digit is calculated by multiplying how many thousands there are, $\mathbf{5}$ by 1000 ($\mathbf{1 0 0 0}$ s column), which is $\mathbf{5 , 0 0 0}$. Then, in the $\mathbf{1 0 , 0 0 0}$ s column the digit value is calculated by multiplying how many ten thousands there are, 6 by $10,000(\mathbf{1 0 , 0 0 0}$ s column), which is 60,000.00
Next, in the $\mathbf{1 0 0 , 0 0 0}$ s column the digit value is calculated by multiplying how many hundred thousands there are, 7 by $100,000(\mathbf{1 0 0 , 0 0 0}$ s column), which is 700,000 .
Then, in the $1,000,000 \mathrm{~s}$ column the digit value is calculated by multiplying how many millions there are, 8 by $1,000,000(1,000,000 \mathrm{~s}$ column $)$, which is $8,000,000$.
Then, in the $\mathbf{1 0 , 0 0 0 , 0 0 0}$ s column the digit value is calculated by multiplying how many ten millions there are, $\mathbf{9}$ by $10,000,000(\mathbf{1 0 , 0 0 0 , 0 0 0}$ s column), which is $\mathbf{9 0}, \mathbf{0 0 0 , 0 0 0}$.
Finally, the digit value of the millions, hundred thousands, ten thousands and thousandths is $8,000,000,700,000,60,000$ and 0.009 .

Test Questions

What is the digit value of the $\mathbf{1 , 0 0 0 , 0 0 0 s}$ (millions), $\mathbf{1 0 0 , 0 0 0 s}$ (hundred thousands), $\mathbf{1 0 , 0 0 0}$ (ten thousands) and $\mathbf{0 . 0 0 1 s}$ (thousandths) in each number?

1) $98,765,432.109$	$=$	6)	$63,537,902.765$	$=$
2) $25,124,619.102$	$=-$	7)	$71,601,393.432$	$=-$
3) $36,217,983.213$	$=$	8)	$82,721,548.098$	$=-$
4) $49,353,774.908$	$=-$	9)	$95,834,657.876$	$=-$
5) $58,406,861.987$	$=-$	10)	$96,095,372.065$	$=$

Compensate

1) $567,621+7,099=?$

Word Problem

Donations for a charity are to increase by $£ 7,099$. The opening balance is $£ .567,621$. What mental strategy can the accountant use to calculate the closing balance?

Step 1

Step 2

Strategy Applied

When the value of a number is near in value to a multiple of $10 \mathrm{~s}, 100 \mathrm{~s}$, 1,000 s, it can be more efficient to round up/down to an appropriate multiple, before calculating the number sentence.

Step 1

First, compensate by rounding 7,099 up to 7,100 , by adding +1 .
Then from five hundred and sixty seven thousand, six hundred and twenty one, count on seven thousand more, equal to five hundred and seventy four thousand, six hundred and twenty one.
Next count on one hundred more, equal to five hundred and seventy four thousand, seven hundred and twenty one.

Step 2
Finally, decompensate by subtracting -1 from five hundred and seventy four thousand, seven hundred and twenty one, equals the total value of five hundred and seventy four thousand, seven hundred and twenty.

Part Whole Model

Bar Model

567,621	7,099
$? 574,720$	
$?$	

Test Questions

1) $567,621+7,099=$
2) $355,102+54,097=$ \qquad
3) $400,102+87,005=$ \qquad
4) $675,555+987=$ \qquad
5) $888,777+55,005=$ \qquad
6) $801,821+1,002=$ \qquad
7) $812,392+98,505=$ \qquad
8) $333,333+2,222=$ \qquad
9) $40,915+8,998=$ \qquad
10) $8,391+999=$ \qquad
11)__ $=99,999+200$
11) $=99,999+50$
12) $\quad=9,999+20$
13) \qquad $=8,999+$60

More Than 10,000

1) $368,701+21,000=?$

Word Problem

The population of a town is three hundred and sixty eight thousand, seven hundred and one. Next year it is expected to increase by a further twenty one thousand.
What will the population of the town be?

Number Line

Strategy Applied

Partition 21,000 into its digit values of $\mathbf{1 0 , 0 0 0} s+1,000 s, 20,000+1,000$.
First, draw a number line and write three hundred and sixty eight thousand, seven hundred and one at the start.

Then, from three hundred and sixty eight thousand, seven hundred and one count on twenty thousand more in multiples of $\mathbf{1 0 , 0 0 0}$ s, equal to three hundred and eighty eight thousand, seven hundred and one.

Next, count on one thousand more in multiples of $1,000 \mathrm{~s}$, equal to three hundred and eighty nine thousand, seven hundred and one.

Finally, the missing number is 389,701 .

Part Whole Model

Bar Model

368,701	21,000
? 389,701	

Test Questions

1) $368,701+21,000=$ \qquad
2) $494,009+32,000=$ \qquad
3) $80,400+73,000=$ \qquad
4) $840,000+48,000=$ \qquad
5) $383,000+92,000=$ \qquad
6) $372,000+43,000=$ \qquad
7) $468,888+110,000=$ \qquad
8) $301,900+85,000=$ \qquad
9) $560,000+450,000=$ \qquad
10) $900,900+290,000=$ \qquad
11) \qquad $=210,100+72,000$
12) $\quad=444,444+55,000$
13)__ $=230,000+90,000$
13) \qquad $=260,000+75,000$

Decimals

1) $56.97+8.102=?$

Word Problem

Fifty six point nine seven litres mixes with eight point one zero two litres. Can a seventy litre container hold both of the liquids?

Partitioning

5	0	.	0	0	0	+	0	.	0	0	0	$=$	5	0	.	0	0	0
6	\cdot	0	0	0	+	8	.	0	0	0	$=$	1	4	.	0	0	0	
0	\cdot	9	0	0	+	0	.	1	0	0	$=$	1	.	0	0	0		
0	.	0	7	0	+	0	.	0	0	0	$=$	0	.	0	7	0		
0	.	0	0	0	+	0	.	0	0	2	$=$	0	.	0	0	2		
6	5	.	0	7	2													

Strategy Applied

Partition both numbers into $10 \mathrm{~s}, 1 \mathrm{~s}, 10$ ths, 100 ths and add together their relative digit values.

$$
56.97=50+6+0.9+0.07 \quad 8.102=8+0.1+0.00+0.002
$$

First, add the 10 s digit values of 50 and 0 , equal to fifty.
Then, add the 1 s digit values of 6 and 8 , equal to fourteen.
Next, add the 10 ths digit values of 0.9 and 0.1 , equal to one.
Then, add the 100 ths digit values of 0.07 and 0.00 , equal to zero point zero seven.
Next, add the 1000 ths digit values of 0.000 and 0.002 , equal to zero point zero zero two.
Next, use column addition to add the values of $50+14+1+0.07+0.002$.
Finally, 56.97 plus 8.102 is equal to $\mathbf{6 5 . 0 7 2}$.

Part Whole Model

Bar Model

56.97	8.102
? 65.072	

Test Questions

1) $56.97+8.102=$ \qquad
2) $94.37+8.122=$ \qquad
3) $32.97+1.001=$ \qquad
4) $21.06+1.934=$ \qquad
5) $22.87+5.100=$ \qquad
6) $340.0+3.905=$ \qquad
7) $23.56+5.036=$ \qquad
8) $25.04+9.138=$ \qquad
9) $57.40+1.308=$ \qquad
10) $12.60+4.194=$ \qquad
11) $=33.75+5.130$
12) \qquad
13) $\ldots=65.41+8.160$
14) \qquad $=38.10+8.112$

Column Addition

1) $682,088+375,253=?$

Step 1

Step 2

$+$| | $\mathbf{6}$ | $\mathbf{8}$ | $\mathbf{2}$ | $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathbf{3}$ | 7 | $\mathbf{5}$ | 2 | $\mathbf{5}$ | $\mathbf{3}$ |
| 1 | 0 | 5 | 7 | 3 | 4 | 1 |
| 1 | 1 | | | 1 | 1 | |

Strategy Applied

Step 1
First, in the 1 s column add altogether, $8+3$, equals 11 ones $(10+1)$.
Write 1 in the total value of the 1 s column, then exchange/regroup the
10 ones into 1 ten to the 10 s column and write 1 below the total value line of the $\mathbf{1 0 s}$ column.
Then, in the 10 s column add altogether, $8+5+1$, equals 14 tens $(100+40)$.
Write 4 in the total value of the 10s column, then exchange/regroup the 10 tens into 1 hundred to the $\mathbf{1 0 0}$ s column and write 1 below the total value line of the 100 s column.
Next, in the 100s column add altogether, $0+2+1$, equals $\mathbf{3}$ hundreds (300).

Write 3 in the total value of the $\mathbf{1 0 0}$ s column.
Step 2
Then, in the $\mathbf{1 , 0 0 0}$ s column add altogether, $2+5$, equals 7 thousands $(7,000)$.
Write 7 in the total value of the 1,000 s column.
Next, in the $\mathbf{1 0 , 0 0 0}$ s column add altogether, $8+7$, equals 15 ten thousands $(100,000+50,000)$.
Write 5 in the total value of the $\mathbf{1 0 , 0 0 0}$ s column, then exchange/regroup the 10 ten thousands into 1 hundred thousand to the $\mathbf{1 0 0 , 0 0 0}$ s column and write 1 below the total value line of the $\mathbf{1 0 0 , 0 0 0}$ s column. Then, in the $\mathbf{1 0 0 , 0 0 0}$ s column add altogether, $6+3+1$, equals 10 hundred thousands $(1,000,000+0)$.

Write 0 in the total value of the 100,000 s column, then exchange the 10 hundred thousands into 1 million to the $1,000,000$ s column. and write 1 below the total value line of the $1,000,000 \mathrm{~s}$ column.
Finally, in the $\mathbf{1 , 0 0 0 , 0 0 0}$ s column add altogether, $0+0+1$, equals
1 million. Write 1 in the total value of the $1,000,000 \mathrm{~s}$ column.
Total value is $1,057,341$.

Part Whole Model

Bar Model

Test Questions

| $1)$ | 6 | 8 | 2 | 0 | 8 | 8 |
| :--- |
| + | 3 | 7 | 5 | 2 | 5 | 3 |

$4)$
$+\quad 50$
+

5) $7 \quad 5 \quad 2 \quad 4 \quad 7 \quad 6$

$6)$
675
636
$+\quad 528$

7)	7	8	0		
	3	3	0		

8) | 8 | 7 | 0 | 9 | 9 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |

9)					9
	7	8	0		0
+	2	7	8		3

		5			1	0		2
	3	8			0	7		

11)	5	5	5	8			5
+	2	7	8	5			7

12)		8				
	3	8				7
+	2	5	6			2

Column Addition with Decimals

1) 86 . $975+51$. $591=$?

Step 1

| 8 | 6 | 9 | 7 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 5 | 1 | 5 | 9 | 1 |
| | | 5 | 6 | 6 |
| | 1 | 1 | | |

Step 2

	$\mathbf{8}$	$\mathbf{6}$.	$\mathbf{9}$	$\mathbf{7}$	$\mathbf{5}$
	$\mathbf{5}$	$\mathbf{1}$.	$\mathbf{5}$	$\mathbf{9}$	$\mathbf{1}$
1	3	8	.	5	6	6
1		1		1		

Strategy Applied

Step 1
First, in the 1,000ths column add altogether, $5+1$, equals 6 thousandths (0.006).

Write 6 in the total value of the 1,000 ths column.
Then, in the 100 ths column add altogether, $7+9$, equals 16 hundredths $(0.1+0.06)$.
Write 6 in the total value of the 10 ths column, then exchange/regroup the 10 hundredths into 1 tenth to the 10ths column and write 1 below the total value line of the 10 ths column.
Next, in the $\mathbf{1 0}$ ths column add altogether, $9+5+1$, equals 15 tenths $(1.0+0.5)$.
Write 5 in the total value of the 10 ths column.

Step 2

Then, in the 1 s column add altogether, $6+1+1$, equals 8 ones (8).
Write 8 in the total value of the 1 s column.
Next, in the $\mathbf{1 0}$ s column add altogether, $8+5$, equals 13 tens $(100+30)$.
Write 3 in the total value of the 10 s column, then exchange/regroup the 10 tens into 1 hundred to the 100 s column and write 1 below the total value line of the 100 s column.
Finally, in the 100s column add altogether, $0+0+1$, equals 1 hundred (100).

Write 1 in the total value of the 100 s column. Total value is 138.566 .

Part Whole Model

Bar Model

86.975	51.521
? 138.496	

Test Questions

Compensate

1) $40,915-8,998=$?

Word Problem

A bank balance of forty thousand, nine hundred and fifteen pounds is reduced by eight thousand nine hundred and ninety eight pounds. What is the closing bank balance?

Step 1

Step 2

Strategy Applied

When the value of a number is near in value to a multiple of $10 \mathrm{~s}, 100 \mathrm{~s}$, $\mathbf{1 , 0 0 0}$ s, it can be more efficient to round up/down to an appropriate multiple, before calculating the number sentence.

Step 1
First, compensate by rounding 8,998 up to 9,000 , by adding +2 .
Then from forty thousand, nine hundred and fifteen count back nine thousand less, equal to thirty one thousand, nine hundred and fifteen.

Step 2
Finally, decompensate by subtracting +2 from thirty one thousand, nine hundred and fifteen, to equal the total value of thirty one thousand, nine hundred and thirteen.

Part Whole Model

Bar Model

40,915	
8,998	$\underline{31,917}$

Test Questions

1) $40,915-8,998=$
2) $9,900-2=$ \qquad
3) $100,101-9=$
4) $777,999-12=$
5) $333,333-8,998=$ \qquad
6) $8,999-60=$ \qquad
7) $100,000-9=$
8) $9,999-2=$ \qquad
9) $812,392-91,997=$ \qquad
10) $99,999-50=$ \qquad
11) $20,001-4=$
12) 99,999 - $200=$ \qquad
13) $801,821-21,003=$ \qquad
14) $675,555-987=$

More Than 10,000

1) $630,000-325,000=?$

Word Problem

The British Army has 630,000 soldiers in 2001, but today, the number of soldiers has decreased by 325,000 . How many soldiers currently serving?

Number Line

Strategy Applied

Partition 325,000 into its digit values of $\mathbf{1 0 0 , 0 0 0 s}, \mathbf{1 0 , 0 0 0} \mathrm{s}, \mathbf{1 , 0 0 0} \mathrm{s}$, $300,000+20,000+5,000$.

First, draw a number line and write six hundred and thirty thousand at the end.

Then, from six hundred and thirty thousand count back 300,000 less in multiples of $\mathbf{1 0 0 , 0 0 0}$ s, equal to three hundred and thirty thousand.

Next, from three hundred and thirty thousand count back 20,000 less in multiples of $\mathbf{1 0 , 0 0 0} \mathbf{s}$, equal to three hundred and ten thousand.

Then, from three hundred and ten thousand count back 5,000 less in multiples of $1,000 \mathrm{~s}$, equal to three hundred and five thousand.

Finally, the missing number is three hundred and five thousand.

Part Whole Model

630,000	
325,000	$? 305,000$

Test Questions

1) $630,000-325,000=$
2) $840,000-48,000=$ \qquad
3) $900,000-546,000=$ \qquad
4) $750,000-80,000=$ \qquad
5) $820,000-405,000=$ \qquad
6) $301,900-20,000=$ \qquad
7) $601,600-20,000=$ \qquad
8) $900,900-150,000=$ \qquad
9) $210,100-25,000=$ \qquad
10) $444,444-33,000=$ \qquad
11) $330,000-230,000=$ \qquad
12) $888,800-303,000=$ \qquad
13) $812,000-98,000=$ \qquad
14) $801,000-16,000=$ \qquad

Decimals

1) $154.6-8.5=?$

Word Problem

The perimeter of Garden A is eight point five metres less than the perimeter of Garden B, one hundred and fifty four point six metres. What is the perimeter of Garden A?

Partitioning

Strategy Applied

Non- standard partition both numbers into $10 \mathrm{~s}, 1 \mathrm{~s}, 10$ ths, 100 ths and subtract their relative digit values.
$154.6=100+54+0.6 \quad 8.5=8+0.5$.
First, subtract the 100 s digit values of 100 and 0 , equal to one hundred. Then, subtract the $\mathbf{1 0}$ s and 1 s digit values of 54 and 8 , equal to forty six. Next, subtract the 10 ths digit values of 0.6 and 0.5 , equal to zero point one.
Next, use column addition to add the values of $100+46+0.01$.
Finally, 154.6 subtract 8.5 is equal to 146.1 .

Part Whole Model

Bar Model

Test Questions

1) $154.600-8.500=$
2) $817.020-59.010=$ \qquad
3) $65.710-1.510=$ \qquad
4) $524.100-8.100=$ \qquad
5) $36.880-4.680=$ \qquad
6) $782.400-3.400=$ \qquad
7) $291.600-81.600=$ \qquad
8) $460.405-9.205=$ \qquad
9) $178.60-1.500=$ \qquad
10) $385.100-8.100=$ \qquad
11) $=6.000-5.738$
12) $=9.000-3.45$
13) $=4.000-1.15$
14)_ $=7.000-2.25$

Column Subtraction

1) $500,102-337,678=?$

Step 1							Step 2							Step 3									
$\begin{array}{ccccc} 4 & 9 & 9 & 10 & 9 \\ 5 & 10 & 1 & \theta & 4^{1} \end{array}{ }^{12}$							$\begin{array}{ccc} 4 & 9 & \\ 5 & 10 & 1 \end{array}$			10		9			99		10		0				
									-			10	10		$4^{1} 0$								
-		3	7	6	7	8				3		3	7	6	7		- 3	3	7	76	6	7	8
						4						2		1	6	62	2, 4	4	2				

Strategy Applied

Step 1
In the $\mathbf{1 s}$ column, 2 subtract 8 , you cannot do as 2 is a lower value than 8 . From the 10s column, regroup 1 ten from the 0 tens, you cannot do this as the value of the tens is zero.
Instead exchange/regroup 1 hundred from the 1 hundreds in the 100s column to the 10 s column.
Cross out the 1 hundreds and write 0 hundreds above, then write the exchanged/regrouped 1 hundred next to the 0 tens to make 10 tens. Still in the 10 s column, regroup 1 ten into 10 ones from the 10 s column to the 1 s column.
Cross out the 10 tens and write 9 tens above, then write the exchanged/ regrouped 1 ten next to the 2 ones to make 12 ones.
In the 1 s column, 12 subtract 8 , equals 4 ones (4).
Write 4 in the total value of the 1 s column.
In the 10s column, 9 subtract 7 , equals 2 tens (20).
Write 2 in the total value of the 10 s column.
Step 2
In the $\mathbf{1 0 0}$ s column, 0 subtract 6 , you can't do as 0 is a lower value than 6 .
From the $\mathbf{1 , 0 0 0}$ s column, regroup 1 thousand from the 0 thousands, you cannot do this as the value of the thousands is zero.
From the $\mathbf{1 0 , 0 0 0}$ s column, regroup 1 ten thousand from the 0 ten thousands, you cannot do this as the value of the ten thousands is zero. Instead exchange/regroup 1 hundred thousand from the 5 hundred thousands in the $\mathbf{1 0 0}, \mathbf{0 0 0}$ s column to the $\mathbf{1 0 , 0 0 0}$ s column.

Exchange/Regroup 1 hundred thousand into 10 ten thousands from the $\mathbf{1 0 0}, \mathbf{0 0 0}$ s column to the $\mathbf{1 0 , 0 0 0}$ s column.
Cross out the 5 hundred thousands and write 4 hundred thousands above, then write the exchanged/regrouped 1 hundred thousand next to the 0 ten thousands to make 10 ten thousands.
Still in the $\mathbf{1 0 , 0 0 0}$ s column, regroup 1 ten thousand into 10 thousands from the $\mathbf{1 0 , 0 0 0}$ s column to the $\mathbf{1 , 0 0 0}$ s column.
Cross out the 10 ten thousands and write 9 ten thousands above, then write the exchanged/regrouped 1 ten thousand next to the 0 thousands to make 10 thousands.
Still in the $\mathbf{1 , 0 0 0}$ s column, regroup 1 thousand into 10 hundreds from the 1,000 s column to the 100 s column.
Cross out the 10 thousands and write 9 thousands above, then write the exchanged/regrouped 1 thousand next to the 0 hundreds to make 10 hundreds.
Step 3
In the 100 s column, 10 subtract 6 , equals 4 hundreds (400).
Write 4 in the total value of the $\mathbf{1 0 0}$ s column.
In the $\mathbf{1 , 0 0 0}$ s column, 9 subtract 7 , equals 2 thousands $(2,000)$.
Write 2 in the total value of the 1,000 s column.
In the $\mathbf{1 0 , 0 0 0}$ s column, 9 subtract 3 , equals 6 ten thousand $(60,000)$.
Write 6 in the total value of the $\mathbf{1 0 , 0 0 0}$ s column.
In the $\mathbf{1 0 0}, \mathbf{0 0 0}$ s column, 4 subtract 3 , equals 1 hundred thousand $(100,000)$ Write 1 in the total value of the $\mathbf{1 0 0 , 0 0 0}$ s column.
Total value is 162,424 .

Test Questions

1) 500102

- 337678
$\begin{array}{r}2) \\ -\quad 290679 \\ \hline\end{array}$

3) 72530

\square

- 35961

4) $7 \begin{array}{llllll}7 & 8 & 0 & 0 & 3 \\ & 2 & 7 & 9 & 1 & 5\end{array}$
5) | 3 | 5 | 5 | 1 | 0 | 2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| - | 7 | 8 | 9 | 0 | 7 |

Page 22

Column Subtraction with Decimals

1) 350 270 5 . 90 $5=?$

Word Problem

Two fish tanks have different capacities. The second tank's capacity is 53.905 litres less than three hundred and fifty point two seven litres. What is the capacity of the second fish tank?

Step 1

Step 2

2	14	9			6	
$\mathbf{3}$	5	10	.	12	7	10
-	5	3	.	9	0	5
2	9	6	.	3	6	5

Strategy Applied

Step 1
In the $\mathbf{1 , 0 0 0}$ ths column, 0 subtract 5 , you cannot do as 0 is a lower value than 5.
Exchange/Regroup 1 hundredth into 10 thousandths from the 10ths column to the 1,000 ths column.
Cross out the 7 hundredths and write 6 hundredths above, then write the exchanged/regrouped 1 hundredth next to the 0 thousandths to make 10 thousandths.
In the 100 ths column, 6 subtract 0 , equals 6 hundredths (0.06). Write 6 in the total value of the 100 ths column.

In the 10 ths column, 2 subtract 9 , you can't do as 2 is a lower value than 9 . Exchange/Regroup 1 one into 10 tenths from the 1 s column to the 10ths column, you cannot do this as the value of the ones is zero. Instead exchange/regroup 1 ten from the 5 tens in the 10s column to the 1 s column.
Cross out the 5 tens and write 4 tens above, then write the exchanged/ regrouped 1 ten next to the 0 ones to make 10 ones.

Still in the 1 s column, regroup 1 one into 10 hundredths from the 1 s column to the $\mathbf{1 0}$ ths column.
Cross out the 10 ones and write 9 ones above, then write the exchanged/ regrouped 1 one next to the 2 tenths to make 12 tenths.
In the 10 ths column, 12 subtract 9 , equals 3 tenths (0.3).
Write 3 in the total value of the 10 ths column.

Step 2

In the 1 s column, 9 subtract 3 , equals 6 ones (6).
Write 6 in the total value of the 1 s column.
In the 10 s column, 4 subtract 5 , you cannot do as 4 is a lower value than 5 .
Exchange/Regroup 1 hundred into 10 tens from the 100s column to the 1 s column.
Cross out the 3 hundreds and write 2 hundreds above, then write the exchanged/regrouped 1 hundred next to the 4 tens to make 14 tens.
In the 10 s column, 14 subtract 5 , equals 9 tens (90).
Write 9 in the total value of the 10 s column.
In the $\mathbf{1 0 0}$ s column, 2 subtract 0 , equals 2 hundreds (200).
Write 2 in the total value of the 100 s column.
Total value is 296,365 .

Test Questions

$1)$	3	5	0	.	2	7
0						
-	5	3	.	9	0	5

$3)$	2	5	7	.	0	4	0
-			9	\cdot	1	3	8

$5)$						
-	5	6	.	9	2	0
-	3	9	.	0	4	3

2) 523 . 560

| $4 \quad 5$ | 0 | 5 |
| :--- | :--- | :--- | :--- |

4)	3	8	5	\cdot	1	0	0
-			8	\cdot	1	1	2

\qquad
6) $460 \quad .400$

2	9	5	0	0

Multiples of 10

1) $600 \times 40=?$

Strategy Applied

The six hundred represents the value of each group, the multiplicand.
The forty represents how many groups of six hundred's there are, the multiplier.
The ? represents the total value of forty groups of six hundred, the product.

Step 1
Step 2
$\begin{array}{lllllllllllllll}6 & 0 & 0 & \text { is } & 6 & \mathrm{x} & 1 & 0 & 0 & 6 & \mathrm{x} & 4 & = & 2\end{array}$
$40 \begin{array}{llllllllllllll} \\ 4 & 0 & \text { is } & \mathbf{x} & 1 & 0 & 1 & 0 & 0 & \mathbf{x} & 1 & 0 & = & 1,\end{array} 0$
Step 3
$24 \mathrm{x} 1,000=24,000$

Step 1

Six hundred partitioned represents the value of six lots of hundreds or 6×100.
Forty partitioned represents the value of four lots of tens or 4×10.
Step 2
First, multiply the values of six and four, equals twenty four.
Then, multiply the values of one hundred and ten, equals one thousand.
Step 3
Finally, multiply the values of twenty four and one thousand, equal to twenty four thousand, the product.

Test Questions

1) $600 \mathrm{x} \quad 40=$
2) 80 x $120=$ \qquad
3) 30 x $110=$ \qquad
4) $500 \mathrm{x} \quad 80=$
5) $3 \times 1,200=$ \qquad
6) $4 \times 1,100=$ \qquad
7) 50 x $700=$
8) $40 \times 120=$ \qquad
9) $500 \mathrm{x} \quad 60=$ \qquad
10) $40 \mathrm{x} \quad 800=$ \qquad
11)__ $=20$ x 50 x 30
12)__ $=40 \quad \mathrm{x} \quad 60 \quad \mathrm{x} \quad 10$
13)__ $=80$ x $70 \quad$ x 20
11) \qquad $=15 \mathrm{x} 50 \mathrm{x}$20

Decimals

1) $0.08 \mathrm{x} \quad 9=?$

Strategy Applied

Zero point zero eight represents the value of each group, the multiplicand.
The nine represents how many groups of zero point zero eight's there are, the multiplier.
The ? represents the total value of nine groups of zero point zero eight, the product.

Step 1
$0 \quad 0 \quad 0 \quad 8 \quad$ or $\frac{8}{100}$ or $\quad 8 \div 100$
Step 2
$8 \mathrm{x} 9=72$

Step 3

10s	1s		10ths	100ths
7	2	\cdot		
	0	\cdot	7	2

$72 \div 100=0.72$

Step 1
Zero point zero eight partitioned represents the value of eight hundredths or $8 \div 100$

Step 2

First, multiply the values of eight and nine, equal to seventy two.

Step 3
Finally, divide seventy two by one hundred, equal to zero point seven two.

Test Questions

1) $0.08 \mathrm{x} \quad 9=$
2) $0.07 \mathrm{x} 8=$ \qquad
3) $0.06 \mathrm{x} 7=$ \qquad
4) $0.04 \mathrm{x} \quad 12=$ \qquad
5) $0.03 \mathrm{x} 7=$ \qquad
6) $0.8 \mathrm{x} 8=$ \qquad
7) $0.7 \mathrm{x} 9=$
8) $0.6 \mathrm{x} 11=$ \qquad
9) $0.3 \mathrm{x} 5=$ \qquad
10) $0.4 \mathrm{x} 11=$ \qquad
11)___ $=0.12 \mathrm{x} 2$
11) \qquad $=0.11 \mathrm{x}$ 3
12) $\quad=0.18 \mathrm{x} 4$
13) \qquad $=0.09 \mathrm{x}$ 5

x10, x100 and x1,000

Multiply the value below first by $\mathbf{x 1 0}$, then by $\mathbf{x 1 0 0}$, next by $\mathbf{x 1 , 0 0 0}$ and write down the answers consecutively.

1) $2.381=$ \qquad

Place Value Grid

1,000s	100s	10s	1s	-	10ths	100ths	1,000ths	
			2	-	3	8	1	Value
		2	3	\cdot	8	1		x10
	2	3	8	\cdot	1			x100
2	3	8	1	-				x1,000

Strategy Applied

Method 1

Multiply any value by ten, means that value will become ten times as big.
Each digit in the value will move one column place value to the left, starting with the greatest place value, the 1 s .

Method 2

Multiply any value by one hundred, means that value will become one hundred times as big.
Each digit in the value will move two column place values to the left. starting with the greatest place value, the 1 s .

Method 3

Multiply any value by one thousand, means that value will become one thousand times as big.
Each digit in the value will move three column place values to the left. starting with the greatest place value, the 1 s .

Finally 2.381 multiplied by $\mathbf{x 1 0}, \mathbf{x} 100, \mathbf{x} 1,000=23.81,238.1,2381$

Test Questions

Multiply each value below first by $\mathbf{x 1 0}$, then by $\mathbf{x 1 0 0}$, next by $\mathbf{x 1 , 0 0 0}$ and write down the answers consecutively.

1) 2.381
2) 4.11
3) 300.01
4) 999.9
5) 567
6) 5869
7) 4560.05
8) 28.6
9) 8851.0
10) 101.0
11) 238.100
12) 58.69
13) 99.99
14) 5.67

Short Multiplication

1) $28,395 \mathrm{x} 9=$?

Step 1

Step 2

Strategy Applied

Step 1
In the 1 s column, multiply 5 by 9 , equals 45 ones $(40+5)$.
Write 5 in the total value of the 1 s column.
Exchange/Regroup the 40 ones into 4 tens from the 1s column to the 10s column and write 4 below the total value line of the 10s column. In the 10s column, multiply (90) 9 by 9 , equals 81 tens (810).
Add the exchanged/regrouped 4 tens (40) below, equals 85 tens $(800+50)$.
Write 5 in the total value of the 10 s column.
Exchange/Regroup the 80 tens into 8 hundreds from the 10 s column to the $\mathbf{1 0 0}$ s column and write 8 below the total value line of the 100 s column

Step 2

In the 100s column, multiply (300) 3 by 9 , equals 27 hundreds $(2,000+700)$.
Add the exchanged/regrouped 8 hundreds (800) below, equal to 35 hundreds $(3,000+500)$. Write 5 in the total value of the 100 s column. In the $\mathbf{1 , 0 0 0}$ solumn, multiply $(8,000) 8$ by 9 , equals 72 thousands ($70,000+2,000$).
Add the exchanged/regrouped 3 thousands $(3,000)$ below, equals 75 thousands ($70,000+5,000$).
Write 5 in the total value of the 1,000 s column.

Exchange/Regroup the 70 thousands into 7 hundred thousand from the $\mathbf{1 , 0 0 0}$ s column to the $\mathbf{1 0 , 0 0 0}$ s column and write 7 below the total value line of the $\mathbf{1 0 , 0 0 0}$ s column.

Step 3
In the $\mathbf{1 0 , 0 0 0}$ s column, multiply $(2,000) 2$ by 9 , equals 18 ten thousands $(100,000+80,000)$.
Add the exchanged/regrouped 7 thousands $(7,000)$ below, equals 25 ten thousands $(200,000+50,000)$.
Write 5 in the total value of the $\mathbf{1 0 , 0 0 0}$ s column.
Write 2 in the total value of the $\mathbf{1 0 0 , 0 0 0}$ s column.
Total value is 255,555 .

Test Questions

1) 32954
2) $708 \quad 2 \quad 5$
3) 28395
$x \quad 8$
$\mathrm{x} \quad 9$
\qquad
\qquad
\qquad

4) 4781
5) 5418
$\mathrm{x} \quad 9$

\qquad
6) 879

x	3

8) 167

9) 574
10) 476

11) 71

$\mathrm{x} \quad 8$

$12)$
x

13) 61
x $\quad 4$
14) 65
x 3

Short Multiplication with Decimals

1) $75 \cdot 836 \times 5=?$

Word Problem

What is the total perimeter of five new luxury holiday resorts in Asia, if each one has a perimeter of seventy five point eight three six kms.

Step 1

Step 2

Strategy Applied

Step 1
In the 1,000 ths column, multiply 6 by 5 , equals 30 thousandths ($0.03+0.000$).
Write 0 in the total value of the 1,000 ths column.
Exchange/Regroup the 30 thousandths into 3 hundredths from the
1000ths column to the 100 ths column and write 3 below the total value line of the 100 ths column.
In the 100 ths column, multiply 3 by 5 , equals 15 hundredths ($0.1+0.05$).
Add the exchanged/regrouped 3 hundredths below, equal to 18
hundredths $(0.1+0.08)$.
Write 8 in the total value of the 100 ths column.
Exchange/Regroup the 10 hundredths into 1 tenth from the 100ths column to the 10 ths column and write 1 below the total value line of the 10ths column.
In the 10 ths column, multiply 8 by 5 , equals 40 tenths ($4+0.0$).
Add the exchanged/regrouped 1 tenths below, equals 41 tenths ($4+0.1$).
Write 1 in the total value of the 10 ths column.

Step 2

In the $1 \mathbf{s}$ column, multiply 5 by 5 , equals 25 ones $(20+5)$.
Write 5 in the total value of the 1 s column.
Exchange/Regroup the 20 ones into 2 tens from the 1 s column to the 10s column and write 2 below the total value line of the 10 s column.
In the 10 s column, multiply 7 by 5 , equals 35 tens ($300+50$).
Add the exchanged/regrouped 2 tens below, equals 37 tens $(300+70)$. Write 7 in the total value of the 10 s column.
Write 3 in the total value of the $\mathbf{1 0 0}$ s column.
Total value is 379.180 .

Part Whole Model

Bar Model

Test Questions

1) 75 . 836
2) 91 . 372
3) 35.49
x \qquad x \qquad
9
x \qquad
4) 25 . 099
x \qquad
5) 82.998
x \qquad
\qquad
6) 93.78
x \qquad
7) $9 \quad 8 \quad 0 \quad 0 \quad 7 \quad 9$
x \qquad
8) 29 . 784
x \qquad
9) 82 . 30
x

\qquad
\qquad
\qquad

Long Multiplication

1) $4598 \times 62=?$

Strategy Applied

Step 1 (First line of working out)

In the 1 s column, 8×2, equals 16 ones $(10+6)$.
Write 6 underneath the 2 in the 1 s column.
Regroup the 10 ones into 1 ten and write it as a small 1 below the 6 in the 10s column.
Step 2
In the 10 s column, (90) 9×2, equals 18 tens $(100+80)$.
Add the regrouped 1 ten to the 18 tens, equals 19 tens $(100+90)$.
Write 9 next to the small 1 in the 10 s column.
Regroup the 10 tens into 1 hundred and write a small 1 below the 5 in the 100s column.
Step 3
In the 100 s column, (500) 5×2, equals 10 hundreds (1,000).
Add the regrouped 1 hundred to the 10 hundreds, equals 11 hundreds $(1,000+100)$. Write 1 next to the small 1 in the 100 s column.
Regroup the 10 hundreds into 1 thousand and write a small 1 below the 5 in the $\mathbf{1 , 0 0 0}$ s column.
Step 4
In the 1,000 s column, $(4,000) 4 \times 2$, equals 8 thousands $(8,000)$.
Add the regrouped 1 thousand to the 8 thousands, equals 9 thousands $(9,000)$. Write 9 next to the small 1 in the 1,000 s column.

Step 5 (Second line of working out)

In the 1 s column, write 0 below the 6 , a place holder, to represent the tens place value of the 6 tens in the number 62, the multiplier. (Discuss) Step 6
In the 1s column, $8 \times 6(60)$, equals 48 tens $(400+80)$.
Write 8 below the 9 in the $\mathbf{1 0 s}$ column.
Regroup the 40 tens into 4 hundreds.
Write a small 4 below the small 1 in the $\mathbf{1 0 0}$ s column.
Step 7
In the 10s column, (90) 9×6 (60), equals 54 hundreds ($5,000+400$).
Add the regrouped 4 hundreds to the 54 hundreds, equals 58 hundreds $(5,000+800)$. Write 8 below the 1 in the $\mathbf{1 0 0}$ s column.
Regroup the 50 hundreds into 5 thousand and write a small 5 below the small 1 in the 1,000 s column.
Step 8
In the 100s column, (500) 5×6 (60), equals 30 thousands $(30,000)$.
Add the regrouped 5 thousand to the 30 thousands, equals 35
thousands $(30,000+5,000)$. Write 5 below the 9 in the $\mathbf{1 , 0 0 0}$ s column.
Regroup the 30 thousands into 3 ten thousands and write a small 3 in the $\mathbf{1 0 , 0 0 0}$ s column.
Step 9
In the 1,000 s column, $(4,000) 4 \times 6(60)$, equals 24 ten thousands $(24,000)$.
Add the regrouped 3 ten thousand to the 24 ten thousands, equals 27
ten thousands $(200,000+70,000)$.
Write 5 below the 9 in the 1,000 s column.
Step 10 (Third line of working out)
Add the first and second lines of working out, excluding the small regrouped values. Total value is 385,076 .

Test Questions

Multiples of 10

1) $3300 \div 30=$?

Word Problem

A box of maths resources costs $£ 3$. The school spends a total of $£ 3,300$. How many boxes were purchased?

Strategy Applied

Three thousand, three hundred represents the total value, the dividend.
Thirty represents how many groups the three thousand, three hundred is equally divided into, the divisor.
? represents the value in each group, the quotient.

Step 1
Step 2
$\begin{array}{lllllllllll}3 & 3 & 0 & 0 & \text { is } & 3 & 3 & x & 1 & 0 & 0\end{array}$
$33 \div 3=11$
$100 \div 10=10$

Step 3

$11 \mathrm{x} 10=110$

Step 1

Three thousand, three hundred partitioned represents the value of thirty three lots of hundreds or 33×100.
Thirty partitioned represents the value of three lots of tens or 3×10.

Step 2

First, divide the value of thirty three by three, equal to eleven.
Then, divide the values of one hundred by ten, equal to ten.
Step 3
Finally, multiply the values of eleven and ten, equal to one hundred and ten, the quotient.

Bar Model

3,300		
110	110	110

Test Questions

1) $3,300 \div 30=$ \qquad
2) $42,000 \div 70=$ \qquad
3) $48,000 \div 80=$ \qquad
4) $3,600 \div 50=$ \qquad
5) $3,500 \div 70=$ \qquad
6) $5,500 \div 500=$ \qquad
7) $4,500 \div 300=$ \qquad
8) $32,000 \div 80=$ \qquad
9) $48,000 \div 40=$ \qquad
10) $15,000 \div 500=$ \qquad
11) $36,000 \div 90=$ \qquad
12) $36,000 \div 60=$ \qquad
13) $48,000 \div 40=$ \qquad
14) $60,000 \div 50=$ \qquad

Decimals

1) $5 \cdot 4 \div 9=$?

Word Problem

An engineer, Mr Young cuts a metal pole five point four metres long into nine equal pieces. How long is one piece?

Strategy Applied

Five point four represents the total value, the dividend.
Nine represents how many groups the five point four is equally divided into, the divisor.
? represents the value of each group, the quotient.
Use a mental strategy and the written method of short division to decide which is the most efficient.

Step 1

$54 \div 9=6$
$5 \cdot 4 \div 9=0 \cdot 6$

Step 1

The mental strategy is to convert the decimal value to a whole number 5 . $4=54$
First, divide the value of fifty four by nine, equal to six.
Then, divide the value of five point four by nine, equal to zero point six, as five point four has one digit in the value of the 10ths and represent the six in the 10 ths and a place holder 0 in the $1 \mathrm{~s}=0$. 6

Step 2

The written method is to divide five point four by nine using short division ,equal to zero point six.

Bar Model

5.4										
0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6		

Test Questions

1) $5.4 \div 9=$ \qquad
2) $2.7 \div 3=$ \qquad
3) $6.0 \div 15=$ \qquad
4) $5.05 \div 1=$ \qquad
5) $7.2 \div 8=$ \qquad
6) $32.6 \div 1=$ \qquad
7) $9.5 \div 5=$ \qquad
8) $9.6 \div 4=$ \qquad
9) $4.86 \div 3=$ \qquad
10) $1.32 \div 12=$ \qquad
11) $1.8 \div 3=$ \qquad
12) $1.2 \div 12=$ \qquad
13) $9.1 \div 7=$ \qquad
14) $1.21 \div 11=$ \qquad

$$
\div 10, \div 100 \text { and } \div 1,000
$$

Divide the value below first by $\div 10$, then by $\div 100$, next by $\div 1,000$ and write down all three answers consecutively.

1) $156=$

Place Value Grid

$\begin{gathered} \text { Value } \\ \div 10 \end{gathered}$	1,000s	100s	10s	1s	-	10ths	100ths	1,000ths
		1	5	6	-			
			1	5	-	6		
$\div 100$				1	-	5	6	
$\div 1,000$				0	-	1	5	6

Strategy Applied

Method 1

Divide any value by ten, means that value will become ten times as small.
Each digit in the value will move one column place value to the right, starting with the greatest place value, the 100s.
Method 2
Divide any value by one hundred, means that number will become one hundred times as small.
Each digit in the number will move two column place values to the right, starting with the greatest place value, the 100s.

Method 3

Divide any number by one thousand, means that number will become one thousand times as small as.
Each digit in the number will move three column place values to the right, starting with the greatest place value, the $\mathbf{1 0 0}$ s.
When the place value is blank, write zero, a place holder.
Finally 156 multiplied by $\div 10, \div 100$ and $\div 1,000=15.6,1.56,1.56$.

Test Questions

Divide the values below first by $\div 10$, then by $\div 100$, next by $\div 1,000$ and write down all three answers consecutively.

1) 156
2) 831
3) 958
4) 7467
5) 1624
6) 456
7) 193
8) 331
9) 222
10) 255
11) 304
12) 2534
13) 326
14) 3915

Short Division

1) $8,253 \div 4=?$

Step 1
2
$4 \longdiv { 8 } 2 2 5 3$

Step 2
$\begin{array}{ll}2 & 0 \\ 4 & \begin{array}{l}8 z^{25} 3\end{array}\end{array}$
Step 5

Step 4
$\begin{array}{rrrrr}2 & 0 & 6 & 3 \\ 4 & 8 & z & 25 & 13\end{array}$

Step 3

| 2 | $0 \quad 6$ | |
| :--- | :--- | :--- | :--- |
| 4 | 8 | $z^{25} 13$ |

Strategy Applied

Step 1
How many lots of 4 divide exactly in to 8 ?
The answer is $2(4 \times 2=8)$, with no remainder.
Write 2 on the line above the 8 .

Step 2

How many lots of 4 divide exactly in to 2?
The answer is $0(4 \times 0=0)$, with a remainder of 2 .
Write 0 on the line above the 2 .
Regroup the remainder 2 to the next digit place value, 5 , to become 25 .

Step 3

How many lots of 4 divide exactly in to 25 ?
The answer is $6(4 \times 6=24)$, with a remainder of 1 .
Write 6 on the line above the 25 .
Regroup the remainder 1 to the next digit place value, 3, to become 13 .

Step 4
How many lots of 4 divide exactly in to 13 ?
The answer is $6(4 \times 3=12)$, with a remainder of 1 .
Write 3 on the line above the 13 .

Step 5

The remainder of 1 , is written as r 1 on the line above or as a fraction $\mathrm{r} \underline{1}$ 4
Remainder of 1 is the numerator and the divisor 4 is the denominator.
Total value is $2,063 \mathrm{r} 1$ or $2,063 \mathrm{r} \quad \underline{1}$
4

Test Questions

1) $8,253 \div 4=$ \qquad
2) $7,643 \div 9=$ \qquad
3) $5,844 \div 8=$ \qquad
4) $3,686 \div 8=$ \qquad
5) $1,571 \div 7=$ \qquad
6) $6,789 \div 7=$ \qquad
7) $8,954 \div 6=$ \qquad
8) $4,555 \div 6=$ \qquad

Short Division

1) $7,521 \div 12=$?

Step 1
0
$1 2 \longdiv { 7 7 5 \quad 2 1 }$

Step 2
$0 \quad 6$
$1 2 \longdiv { 7 7 5 3 2 1 }$

Step 3
$0 \quad 6 \quad 2$
$1 2 \longdiv { 7 7 5 \quad 3 2 8 1 }$

Step 4
$0 \quad 6 \quad 2 \quad 6$
$1 2 \longdiv { 7 } 7 5 \quad 3 2 8 1$

Step 5
$\begin{array}{rrrrrr}0 \quad 6 \quad 2 & 6 \\ 12 & \text { r } 75 \quad 32 & & \underline{9} \\ & & & 12\end{array}$

Strategy Applied

Step 1
How many lots of 12 divide exactly in to 7 ?
The answer is $0(12 \times 0=0)$, with a remainder of 7 .
Write 0 on the line above the 7 .
Cross out the 7 and regroup the remainder 7 to the next digit place value, 5 .

Step 2
How many lots of 12 divide exactly in to 75 ?
The answer is $6(12 \times 6=72)$, with a remainder of 3 .
Write 6 on the line above the 75 .
Regroup the remainder 3 to the next digit place value, 2, to become 32 .

Step 3
How many lots of 12 divide exactly in to 32 ?
The answer is $2(12 \times 2=24)$, with a remainder of 8 .
Write 2 on the line above the 32 .
Regroup the remainder 8 to the next digit place value, 1 , to become 81 .

Step 4

How many lots of 12 divide exactly in to 81 ?
The answer is $6(12 \times 6=72)$, with a remainder of 9 .
Write 6 on the line above the 81 .

Step 5

The remainder of 9 , is written as $\mathbf{r} 9$ on the line above or as a fraction $r \underline{9}$

12
Remainder of 9 is the numerator and the divisor 12 is the denominator.
Total value is 626 r 9 or $626 \mathrm{r} \underline{9}$

Test Questions

1) $\quad 1 2 \longdiv { 7 \quad 5 \quad 2 \quad 1 }$
2) $\quad 1 3 \longdiv { 9 } 8 \begin{array} { l } { 8 } \\ { \hline } \end{array}$
3) $\quad 1 7 \longdiv { 5 } 7 1 1 5$
4) $\quad 2 5 \longdiv { 8 \quad 6 \quad 1 \quad 5 }$
5) $\quad 2 9 \longdiv { 7 \quad 2 \quad 5 \quad 2 }$
6) $4 3 \longdiv { 1 } 1 \begin{array} { l l l } { 1 } & { 1 } & { 9 } \end{array}$
7) $\quad 5 9 \longdiv { 2 \quad 2 \quad 4 \quad 5 }$
8) $\quad 9 7 \longdiv { 8 \quad 8 \quad 2 \quad 9 }$

Page 46

Short Division with Decimals

1) $32.6 \div 5=?$

Step 1

$$
5 \longdiv { 0 }
$$

Step 3

$$
\begin{array}{rrrr}
0 & 6 & . & 5 \\
\hline & \begin{array}{rl}
3 & 32 \\
\hline
\end{array} \\
\hline
\end{array}
$$

Step 2

$$
\begin{array}{r}
0 \quad 6 \quad . \\
5 \longdiv { 3 } 3 2 \quad . { } ^ { 2 6 }
\end{array}
$$

Step 4

$$
\begin{array}{rrrrr}
& 0 & 6 & . & 5 \\
\cline { 2 - 4 } & 332 & .2610
\end{array}
$$

Strategy Applied

Step 1
How many lots of 5 divide exactly in to 3 ?
The answer is $0(5 \times 0=0)$, with a remainder of 3 .
Write 0 on the line above the 3 .
Cross out the 3 and regroup the remainder 3 to the next digit place value 2 , to become 32 .

Step 2

How many lots of 5 divide exactly in to 32 ?
The answer is $6(5 \times 6=30)$, with a remainder of 2 .
Write 6 on the line above the 32 and write a decimal point next to it.
Regroup the remainder 2 to the next digit place value, 6, to become 26 .

Step 3
How many lots of 5 divide exactly in to 26 ?
The answer is $5(5 \times 5=25)$, with a remainder of 1 .
Write 5 on the line above the 26 .
Regroup the remainder 1 to the next digit place value, by writing a place holder, zero, to become 10 .

Step 4

How many lots of 5 divide exactly in to 10 ?
The answer is $2(5 \times 2=10)$, with no remainder.
Write 2 on the line above the 10 .
Total value is 6.52 .

Test Questions

1) $32.6 \div 5=$ \qquad
2) $76.2 \div 5=$ \qquad
3) $51.4 \div 4=$ \qquad
4) $37.8 \div 4=$ \qquad
5) $60.4 \div 8=$ \qquad
6) $96.8 \div 8=$ \qquad
7) $37.2 \div 6=$ \qquad
8) $87.6 \div 6=$ \qquad
9) $78.6 \div 4=$ \qquad
10) $98.52 \div 4=$ \qquad

Long Division

1) $888 \div 37=?$

Step 1

Step 2

0	2	4	
37	8	8	8

$-{ }^{-0}{ }_{8}$
-74
$-{ }^{-0}{ }_{8}$
$\begin{array}{r}-74 \\ \hline 14\end{array}$

-1	4	8
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

Strategy Applied

Step 1
How many lots of 37 divide exactly into 8 ?
The answer is $0(37 \times 0=0)$, with a remainder of 8 .
Write 0 on the line above the 8 .
Write $\mathbf{0}$ below the 8 and draw a line underneath it.
Then 8 subtract $\mathbf{0}$, equals 8 , write the 8 below the $\mathbf{0}$ underneath the line.
Regroup the remainder 8 to the next digit place value, 8 , to become 88 , by writing 8 next to the 8 .

Step 2

How many lots of 37 divide exactly into 88 ?
The answer is $2(37 \times 2=74)$, with a remainder of 14 .
Write 2 on the line above the 8 , next to the 0 .
Write 74 below the 88 and draw a line underneath the 74 .
Then 83 subtract 74, equals 14 . Write 14 below the 74 .

Step 3

Regroup the remainder 14 to the next digit place value, 8 , to become 148, by writing 8 next to the 14 .

Step 4

How many lots of 37 divide exactly into 148?
The answer is 4 ($37 \times 4=148$), with a remainder of 0 .
Write 4 on the line above the 8 , next to the 2 .
Write 148 below the 148 .
Total value is 42 .

Test Questions

1)

2)

3)

4)

5)

6)

$$
9 7 \longdiv { 8 } 8 8 \quad 2 \quad 7
$$

7) $2 9 \longdiv { 7 \quad 2 \quad 5 }$
8) $4 3 \longdiv { 1 } 1 \begin{array} { l l l } { 1 } & { 1 } & { 8 } \end{array}$
9)

$2 9 \longdiv { 6 \quad 8 \quad 4 \quad 4 }$
10)

11)

12)

Find The Missing Number

1) ? $+20,002=33,333$ and $33,333-?=20,002$

Word Problem

Mrs Watts thinks that the missing values in both number sentences are of equal value or the same value. Mr Thorne thinks that both missing values are different. Who is correct, explain why?

Step 1

3	3	3	3	3
-	0	0	0	2
1	3,	3	3	1

Step 2

$$
\begin{aligned}
& \begin{array}{lllll}
3 & 3 & 3 & 3 & 3
\end{array} \\
& \begin{array}{rrrrr}
2 & 0 & 0 & 0 & 2 \\
\hline 1 & 3, & 3 & 3 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Strategy Applied

There are two operations in both number sentences, add and subtract.

Step 1

First, calculate the first number sentence ? $+20,002=33,333$
by applying the inverse operation of column subtraction.
Total value is thirteen thousand, three hundred and thirty one.
Step 2
Then, calculate the second number sentence $33,333-$? $=20,00$
by applying the derived calculation of column subtraction.
Total value is thirteen thousand, three hundred and thirty one.

Part Whole Model

Part Whole Model

Test Questions

1) $\ldots+20,002=33,333$
2) $\ldots+25,100=40,050$
3) $\ldots+58,100=63,000$
4) $\ldots+3,006=19,005$
5) $\ldots+30,500=80,400$
6) $33,333-\ldots=20,002$
7) $300,001-\ldots=200,002$
8) $121,010-\ldots=111,005$
9) $870,999-\ldots=480,999$
10) $444,005-\ldots=22,006$

Balance Equations

1) $18 \times 3=2 \mathrm{x}$?

Word Problem

In a warehouse there are three broken pallets of tin foods that need to be repackaged. Each pallet contains eighteen tins. All of the tins are repackaged onto two pallets. How many tins are on each pallet?

Strategy Applied

There are two operations in the number sentences, both multiplication.
The total value of each number sentence are of equal value or the same.
Step 1

Step 2
$2 \quad 7$
$2 \longdiv { 5 1 4 }$

Step 1

First, calculate the known number sentence $\begin{array}{lllll}1 & 8 & \mathbf{x} & 3\end{array}$, either by using 1 mental strategy of partitioning or written method of short multiplication.
Total value is fifty four.

Step 2
Then, we now know 2 x ? $=54$.
Next use the inverse operation of short division to calculate?
Finally, the missing value is twenty seven.

Test Questions

1) $18 \mathrm{x} 3=2 \mathrm{x}$ \qquad
2) $72,000=24 x \ldots x 1,000$
3) $423 \mathrm{x} 7=9 \mathrm{x}$ \qquad
4) $48,000=16 \mathrm{x}$ \qquad x 1,000
5) $400=20$ x \qquad x $\quad 10$
6) $3,050,020=3,000,000+\ldots+20$
7) $826=800+$ \qquad 6
8) $\ldots+58,100=63,000-2,468$
9) $\ldots+25,100=40,050-1,357$
10) _ $+20,002=33,333-9,083$
11) $16-20=-8+$ \qquad
12) $-16+20=-9+$ \qquad
13) $-12-5=-17+$ \qquad
14) $13-17=-15+$ \qquad

Indices

1) $11^{2}+6^{3}-4^{3}=$?

Strategy Applied

11^{2} represents eleven squared, its expanded form is eleven times eleven, 11 x 11
6^{3} represents six cubed, its expanded form is six times six times six, $6 \times 6 \times 6$
4^{3} represents four cubed, its expanded form is four times four times fou $\begin{array}{lllll}4 & x & x & 4\end{array}$

Step 1 $11 \mathbf{x} 11=110+11=121$

$$
=216
$$

Step 4

$$
\begin{array}{rrr}
2 & 1 \\
1 & 2 & 3137 \\
\hline 3 & 3 & -\quad 64 \\
\hline
\end{array}
$$

Step 1
Use known facts of times tables or step counting to calculate eleven squared. Calculate 11^{2} or 11×11 or 11 lots of 11 , equals the product of one hundred and twenty one.

Step 2

Use known facts of times tables or step counting to calculate six cubed. Calculate 6^{3} or $6 \times 6 \times 6$ or 6 lots of 6 squared, equals the product of two hundred and sixteen.

Step 3

Use known facts of times tables or step counting to calculate four cubed. Calculate 4^{3} or $4 \times 4 \times 4$ or 4 lots of 4 squared, equals the product of sixty four.

Step 4

Calculate the new number sentence $\begin{array}{llllllllll}1 & 2 & 1 & + & 2 & 1 & 6 & - & 6 & 4\end{array}$, equals to two hundred and seventy three.

Test Questions

1) $11^{2}+6^{2}-4^{3}=$ \qquad 8) $5^{2}+3^{3}-4^{2}=$
2) $12^{2}+7^{2}-5^{3}=$ \qquad 9) $3^{2}+2+5^{2}=$
3) $3^{2}+7^{3}+4^{2}=$ \qquad 10) $1^{3}+2^{3}+4^{2}=$
4) $9^{2}+8^{3}-3=$ \qquad 11) $2^{2}+7^{3}-1^{2}=$ \qquad
5) $1^{2}+9^{3}-3^{2}=$ \qquad 12) $4^{2}+8^{3}-2^{2}=$
6) $2^{3}+3+11^{2}=$ \qquad 13) $5^{2}+5^{3}-5^{2}=$
7) $4^{2}+7^{3}-5=$ \qquad 14) $6^{2}+6^{3}-6^{2}=$ \qquad

BIDMAS

1) 10^{2}
$-160 \div$
2) $+(9 x$
3) $=$?

Strategy Applied

BIDMAS is an acronym for Brackets, Indices, Division, Multiplication, Addition and Subtraction. All six operations must be calculated in that order.

Step 1

First, calculate the division number sentence in the Brackets.
$(60 \div 4)$, equal to 15 .

Step 2
Then, calculate the multiplication number sentence in the Brackets.
$\left(\begin{array}{lll}9 & \mathbf{x}\end{array}\right)$, equal to 18 .
Step 3
Next, calculate the Indices 10^{2} or 10×10, equal to 100 .

Step 4
Then, $10^{2}-(60 \div 4)+(9 \times 2)$
now becomes $100-15+18=$?

Step 5
Next, calculate the Addition operation of $15+18$, equal to 33 .

Step 6

Finally, calculate the Subtraction operation of $100-33$, equal to 67.

The missing value is sixty seven.

Test Questions

1) $10^{2}-60 \div 4+9 \times 2=$ \qquad
2) $(3+7) \times(9+17)=$
3) $60-48 \div 4+6=$
4) $2+7 \times 7-10=$ \qquad
5) 236

- $\quad 30 \mathrm{x}$

6) $=$
7) $50 \times 80-40=$ \qquad
8) $8+7 \times 3=$
9) $36+22 \mathrm{x} 4=$ \qquad
10) $60 \times 90-80=$
11) $100-26 \div 2=$ \qquad
12) $220-3 \times 60=$
13) $60 \div(30-24)=$
14) $50+(36 \div 6)=$ \qquad
15) $9^{2}-36 \div 9=$ \qquad

Percentage of a Quantity

1) 36% of $450=?$

Strategy Applied

100% = Quantity of 450
$10 \%=$ Quantity $\div 10(450 \div 10)$
$1 \%=$ Quantity $\div 100(450 \div 100)$
Partition 36% into $30 \%+6 \%$

Step 1
$10 \%=450 \div 10=45$
$30 \%=10 \% \times 3=45 \times 3=363$

	$\underline{10 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$
value	$\underline{1 \mathrm{~s}}$	
	4	5
10	0	

Calculate 30% of the quantity of 450 .
First, work out $\mathbf{1 0 \%}$ of the quantity of 450 , equal to 45 .
Then, 30% is equal to $\mathbf{1 0 \%}$ multiplied by 3 , equal to the quantity of 135 .

Step 2

	10s	$\underline{15}$	1s	-	10ths
value	4	5	0	-	
$\div 100$			4	-	5

\times| | 4 | | 5 |
| ---: | ---: | ---: | ---: |
| | | 6 | |
| 2 | 7 | 0 | |
| | 3 | | |

Calculate 6% of the quantity of 450 .
Next, work out $\mathbf{1 \%}$ of the quantity of 450 , equal to 4.5 .
Then, 6% is equal to 1% multiplied by 6 , equal to the quantity of 27 .

Step 3
$30 \%+6 \%=135+27=162$

135
$+\quad 27$
162

Calculate 36% of the quantity of 450 .
Next, add together the quantities of 30% and 6%, which is 135 add 27 .
Finally, 36% of the quantity of 450 is equal to 162 .

Test Questions

1) 36% of $450=$ \qquad
2) 51% of $9,000=$
3) 36% of $4,500=$ \qquad
4) 20% of $180=$
5) 20% of $300=$ \qquad 10) 20% of $1,800=$
6) 20% of $3,000=$ \qquad 11) 15% of $440=$
7) 35% of $320=$
8) 15% of $4,440=$ \qquad
9) 35% of $3,200=$
10) 45% of $460=$ \qquad
11) 51% of $900=$ \qquad 14) 45% of $4,600=$ \qquad

Fraction of a Quantity

1) $\frac{7}{8}$ of $64 \mathrm{ml}=?$

Word Problem

Emily has sixty four $\mathbf{m l}$ of a liquid to be evaporated in an experiment.
Only seven-eighths evaporate into the atmosphere.
What volume of liquid had been evaporated?

Strategy Applied

A fraction is part of a whole or part of $\mathbf{1}$ and an eighth is 1 of 8 equal groups.
64 ml is the quantity divided equally between the total number of groups.
8 is the denominator, represents the total number of groups.
7 is the numerator, represents seven of the total number of groups.

Step 1

Step 1

First, use short division to calculate the value of one equal group, sixty four ml divided by eight (denominator), equal to eight ml .

Step 2

Then, use short multiplication to calculate the value of seven equal groups, eight ml times seven (multiplier), equal to fifty six. Finally, the value of the missing number is fifty six ml .

Bar Model

64 ml							
8 ml							

Test Questions

1) $\frac{7}{8}$ of $64 \mathrm{ml}=$
2) $\frac{1}{8}$ of $996=$
3) $\frac{1}{7}$ of $602=$
4) $\frac{4}{5}$ of $450=$
5) $\frac{5}{6} \times 24=$
6) $\frac{5}{8} \times 40=$
7) $\frac{2}{5} \times 140=$
8) $\frac{1}{8}$ of $£ 3.20=$
9) $\frac{5}{6}$ of $£ 72=$
10) $\frac{3}{4}$ of $1,000=$

Add Proper Fractions

1) $\frac{2}{3}+\frac{3}{4}=\frac{?}{?}$

Strategy Applied

Add fractions with different denominators, two-thirds and three-quarters.
$\begin{array}{lll}2 \text { is the numerator. } & \frac{2}{2} & 3 \text { is the numerator. }\end{array} \frac{3}{4}$

Step 1
LCM $=12=$ LCD

$$
\begin{aligned}
\frac{2}{3} \times 4 & =\frac{8}{12}
\end{aligned}
$$

Step 2
Step 3

$$
\begin{array}{r}
3 \times 3=\frac{9}{12} \\
\hline 4 \times 3=\frac{1}{12}
\end{array}
$$

$\frac{\mathrm{x} 3}{3}$
6
9
12
$\frac{\mathrm{x} 4}{4}$
8
12

Step 4
$\frac{8}{12}+\frac{9}{12}=\frac{17}{12}$

Step 5
$0 \quad 1$
$1 2 \longdiv { 4 1 7 } \frac { 5 } { 1 2 } = 1 \frac { 5 } { 1 2 }$

Bar Model

Step 1

First, both fractions need to be made equivalent.
Calculate the Lowest Common Multiple/Denominator (LCM/LCD)
of the denominators 3 and 4 , which is 12 .

Step 2

Then, for two-thirds, the denominator 3 is multiplied by 4 to make it equivalent to 12 (LCD).
The numerator 2 must also be multiplied by 4 , equal to 8 .
Step 3
Next, for three-quarters, the denominator 4 is multiplied by 3 to make it equivalent to 12 (LCD).
The numerator 3 must also be multiplied by 3 , equal to 9 .
Step 4
Then, add the numerators $8+9$, equalling 17 and the denominator remains the same as 12 , making the fraction seventeen-twelfths.

Step 5

Next, seventeen-twelfths is an improper fraction and needs to be converted into a mixed fraction, using short division.
17 (numerator) is divided by 12 (denominator), which is 1 remainder 5 .
The remainder 5 is written as a fraction, becoming the numerator and the denominator remains the same, 12 .
Finally, total value is one and five-twelfths. (Simplify if possible)

Test Questions

1) $\frac{2}{3}+\frac{3}{4}=$
2) $\frac{2}{3}+\frac{4}{5}=-$
3) $\frac{2}{5}+\frac{11}{12}=-$
4) $\frac{2}{5}+\frac{5}{9}=$
5) $\frac{3}{4}+\frac{7}{12}=-$
6) $\frac{3}{5}+\frac{7}{12}=$
7) $\frac{5}{6}+\frac{11}{15}=$
8) $\frac{2}{3}+\frac{11}{12}=-$
9) $\frac{5}{6}+\frac{5}{15}=$

$$
\text { 10) } \frac{1}{5}+\frac{3}{4}=
$$

Subtract Proper Fractions

1) $\frac{3}{4}-\frac{5}{10}=\frac{?}{?}$

Strategy Applied

Subtract fractions with different denominators, three-quarters and five-tenths.
$\begin{array}{lll}3 \text { is the numerator. } & 3 & 5 \text { is the numerator. }\end{array} \frac{5}{4} \begin{aligned} & \text { is the denominator. }\end{aligned} \mathbf{4}^{4} \quad 10$ is the denominator. 10

| $\underline{\text { Step } 1}$ |
| :--- | :--- |
| $\mathbf{L C M}$ |$=20=\mathbf{L C D} \quad$| $\underline{\text { Step } 2}$ | $\underline{\text { Step } 3}$ |
| :--- | :--- |
| $\frac{3 \times 5}{4} \times 5=\frac{15}{20}$ | $\frac{5 \times 2}{10 \times 2}=\frac{10}{20}$ |

$\frac{\mathrm{x} 4}{4}$	x 10 8

12
16
20

$$
\begin{aligned}
& \underline{\text { Step } 4} \\
& \frac{15}{20}-\frac{10}{20}=\frac{5}{20} \quad \frac{\text { Step 5 }}{\frac{5}{20} \div 5=5=\frac{1}{4}} 1 .
\end{aligned}
$$

Bar Model

Step 1

First, both fractions need to be made equivalent.
Calculate the Lowest Common Multiple/Denominator (LCM/LCD)
of the denominators 4 and 10 , which is 20 .

Step 2

Then, for three-quarters, the denominator 4 is multiplied by 5 to make it equivalent to 20 (LCD).
The numerator 3 must also be multiplied by 5 , equal to 15 .
Step 3
Next, for five-tenths, the denominator 10 is multiplied by 2 to make it equivalent to 20 (LCD).
The numerator 5 must also multiplied by 2 , equal to 10 .
Step 4
Then, subtract the numerators $15-10$, equalling 5 and the denominator remains the same as 20 , making the fraction five-twentieths.
Step 5
Next, five-twentieths is a proper fraction that can be simplified.
Simplify the fraction, by dividing both the numerator and denominator by the same Highest Common Factor (HCF) of 5 .
Then the numerator 5 is divided by 5 , equal to 1 and the denominator 20 is divided by 5 , equal to 4 .
Finally the total value is five-twentieths or one-quarter.

Test Questions

1) $\frac{3}{4}-\frac{5}{10}=$
2) $\frac{3}{4}-\frac{3}{10}=-$
3) $\frac{7}{5}-\frac{3}{7}=-$
4) $\frac{7}{6}-\frac{7}{10}=-$
5) $\frac{7}{3}-\frac{4}{5}=-$
6) $\frac{3}{4}-\frac{3}{8}=$
7) $\frac{2}{3}-\frac{5}{21}=$
8) $\frac{19}{20}-\frac{4}{5}=$
9) $\frac{8}{9}-\frac{1}{4}=$
10) $\frac{5}{4}-\frac{5}{6}=$

Add Mixed Fractions

1) ${ }^{3} \frac{2}{7}+2 \frac{4}{5}=? \frac{?}{?}$

Strategy Applied

Add fractions with different values, three and two-sevenths and two and four-fifths.
The 3 represents three ones. The 2 represents two ones.
The 2 represents the numerator. The 4 represents the numerator.
The 7 represents the denominator. The 5 represents the denominato
Step 1 Step 2
$\frac{3 \times 7+2}{7}=\frac{23}{7} \quad \frac{2 \times 5+4}{5}=\frac{14}{5} \quad$ L.C.M. $=35=$ L.C. \mathbf{D}

Step 3
$\frac{23 \times 5}{7 \times 5}=\frac{115}{35} \quad \frac{14 \times 7}{5} \times 7=\frac{98}{35}$ $\frac{x 7}{7} \quad \frac{\times 5}{5}$
14
10
$21 \quad 15$
$28 \quad 20$
Step 4 35 25
$\frac{115}{35}+\frac{98}{35}=\frac{213}{35}$ 30 35

Step 5
$\begin{gathered}0 \times 0 \quad 6 \quad 3 \\ 3 5 \longdiv { z 2 4 2 1 3 } 3 5\end{gathered}={ }^{6} \frac{3}{35}$

Step 1

First, convert both mixed fractions into improper fractions.
Multiply the 3 (ones) by 7 (denominator) and add 2 (numerator), numerator equals 23 , the denominator 7 remains the same, twenty three-sevenths.
Multiply the 2 (ones) by 5 (denominator) and add 4 (numerator) numerator equals 14 , the denominator 5 remains the same, fourteen-fifths.

Step 2

Then, both fractions need to be made equivalent.
Calculate the Lowest Common Multiple/Denominator (LCM/LCD)
of the denominators 7 and 5 , which is 12 .

Step 3

Next, for twenty three-sevenths, the denominator 7 is multiplied by 5 to make it equivalent to 35 (LCD).
The numerator 23 must also multiplied by 5 , equals 115 .
Then, for fourteen-fifths, the denominator 5 is multiplied by 7 to make it equivalent to 35 (LCD).
The numerator 14 must also multiplied by 7 , equals 98 .

Step 4

Next, add the numerators $115+98$, equalling 213 .
The denominator remains the same as 35 , equalling the fraction $\frac{213}{35}$

Step 5

Then, two hundred and thirteen-thirty fifths is an improper fraction and must to be converted into a mixed fraction, using short division.
213 (numerator) is divided by 35 (denominator), which is 6 remainder 3 . The remainder 3 is written as a fraction, becoming the numerator and the denominator remains the same, 35 .
Finally, total value is six and three-thirty fifths. (Simplify if possible)

Test Questions

1) $2 \frac{2}{3}+1 \frac{4}{5}=-$
2) $3 \frac{2}{7}+2 \frac{4}{5}=-$
3) $1 \frac{2}{5}+2 \frac{11}{12}=-$
4) $3 \frac{3}{4}+1 \frac{7}{12}=$
5) $4 \frac{5}{6}+2 \frac{11}{15}=-$
6) $3 \frac{2}{3}+\frac{1}{12}=-$

Subtract Mixed Fractions

1) $4 \frac{2}{5}-1 \frac{7}{8}=? \frac{?}{?}$

Strategy Applied

Subtract fractions with different values, four and two-fifths and one and seven-eighths.

The 4 represents four ones.
The 2 represents the numerator.
The 5 represents the denominator.

The 1 represents three ones.
The 7 represents the numerator.
The 8 represents the denominator.

Step 1
$\frac{4 \times 5+2}{5}=\frac{22}{5} \frac{1 \times 8+7}{8}=\frac{15}{8}$

Step 3
$\frac{22}{5} \times 8=\frac{176}{40} \quad \frac{15 \times 5=75}{8 \times 5=}$

Step 4
$\frac{176}{40}-\frac{75}{40}=\frac{101}{40}$
 Step 2
L.C.M. $=40$ = L.C.D

$\times 5$	x 8
5	8
10	16
15	24

20
32
25
40
$\begin{array}{llll}40 & 40 & 40 & 35\end{array}$

40
Step 5
$\begin{array}{ccc}0 & 0 \quad 2 \\ 40 & 1 & 10104 \\ 40\end{array} \quad=\quad \frac{21}{40}$

Step 1

First, convert both mixed fractions into improper fractions.
Multiply the 4 (ones) by 5 (denominator) and add 2 (numerator), numerator equals 22 , the denominator 5 remains the same, twenty two-fifths.
Multiply the 1 (ones) by 8 (denominator) and add 7 (numerator) numerator equals 15 , the denominator 8 remains the same, fifteen-eighths.

Step 2

Then, both fractions need to be made equivalent.
Calculate the Lowest Common Multiple/Denominator (LCM/LCD)
of the denominators 5 and 8 , which is 40 .

Step 3

Next, for twenty two-fifths, the denominator 5 is multiplied by 8 to make it equivalent to 40 (LCD).
The numerator 22 is multiplied by 8 , equals 176 .
Then, for fifteen-eighths, the denominator 8 is multiplied by 5 to make it equivalent to 40 (LCD).
The numerator 15 is multiplied by 5 , equals 75 .

Step 4

Next, subtract the numerators 176-75, equalling 101 and the denominator remains the same as 40 , makes the fraction one hundred and one-fortieths.

Step 5

Then, one hundred and one-fortieths is an improper fraction and must to be converted into a mixed fraction, using short division.
101 (numerator) is divided by 40 (denominator), which is 2 remainder 21. The remainder 21 is written as a fraction, becoming the numerator and the denominator remains the same, 40 .
Finally, total value is two and twenty one-fortieths. (Simplify if possible)

Test Questions

1) $3 \frac{1}{4}-1 \frac{7}{8}=$
2) $4 \frac{2}{5}-1 \frac{7}{8}=$
3) $6 \frac{1}{6}-2 \frac{1}{7}=$
4) $2 \frac{2}{3}-\frac{2}{9}=$
5) $3 \frac{3}{4}-2 \frac{7}{10}=$
6) $4 \frac{2}{5}-3 \frac{2}{6}=$

Multiply Proper Fractions

1) $\frac{7}{8} \mathrm{x}$ $3=\frac{?}{?}$

Strategy Applied
7 represents the numerator. 3 represents the integer.
8 represents the denominator.
$\frac{7}{8} \times 3$ means three lots of seven-eighths. or $\frac{7}{8}+\frac{7}{8}+\frac{7}{8}$

Bar Model

Step 1
$\frac{7 \mathrm{x} \mathrm{3}}{8}=\frac{21}{8}$

Step 2

$$
\begin{array}{r}
02 \\
8 \longdiv { z ^ { 2 } 1 } \frac { 5 } { 8 } = 2 \frac { 5 } { 8 }
\end{array}
$$

Step 1

First, multiply the numerator 7 by the integer 3 , to equal the new numerator of 21.
The denominator remains the same as 8 , making twenty one-eighths.

Step 2
Then, twenty one-eighths is an improper fraction that must be converted into a mixed number.
Next, use short division, divide the numerator by the denominator.
21 (numerator) is divided by 8 (denominator), which is 2 remainder 5 .
The remainder 5 is written as a fraction, becoming the numerator and the denominator remains the same as 8 .
Finally, the total value is two and five-eighths. (Simplify if possible)

Test Questions

1) $\frac{7}{8} \times 3=$
2) $\frac{5}{6} \times 7=$ \qquad
3) $\frac{5}{8} x$
$12=$ \qquad
4) $\frac{3}{8} \times 7=$
5) $\frac{5}{7} \times 8=$
6) $\frac{4}{5} \times 8=$
7) $\frac{3}{7} \times 6=$
8) $\frac{3}{8} \times 12=$

Multiply Proper Fractions

1) $\frac{1}{7} \times \frac{1}{3}=\frac{?}{?}$

Strategy Applied

1 is the numerator.	1	1 is the numerator.	$\frac{1}{1}$
is the denominator.	7	3 is the denominator.	3

Step 1
Step 2

n	x	n
d	x	d

$$
\begin{array}{l|l|}
1 & \times 1 \\
\hline 7 \times 3
\end{array}=\frac{1}{21}
$$

Bar Model

Step 1
Multiply both of the numerators and multiply both of the denominators.

Step 2

First, multiply the numerators 1 by 1 , to equal the new numerator of 1 . Next, multiply the denominators 7 by 3 , to equal the new denominator of 21 , making one-twenty ones.
Finally, total value is one-twenty ones. (simplify if possible)

Test Questions

1) $\frac{1}{7} \times \frac{1}{3}=$
2) $\frac{3}{5} \times \frac{4}{5}=$
3) $\frac{3}{4} \times \frac{3}{7}=$ \qquad
4) $\frac{1}{2} \times \frac{1}{4}=$
5) $\frac{1}{3} \times \frac{1}{8}=$ \qquad
6) $\frac{1}{8} \times \frac{1}{6}=$
7) $\frac{3}{4} \times \frac{6}{7}=$ \qquad
8) $\frac{3}{7} \times \frac{4}{5}=$ \qquad

Multiply Mixed Fractions

1) $2 \frac{3}{5} \times 4=? \frac{?}{?}$

Strategy Applied

2 represents the whole number.
3 represents the numerator.
4 represents the integer.
5 represents the denominator.
$2 \frac{3}{5} \times 4$ means four lots of two and three-fifths.

$$
\text { or } 2 \frac{3}{5}+2 \frac{3}{5}+2 \frac{3}{5}+2 \frac{3}{5}
$$

Step 1 $\underline{\text { Step 2 }}$
$2 \times 5+3=\frac{13}{5} \quad \frac{13 \times 4}{5}=\frac{52}{5} \quad \begin{array}{rr}10 & 2 \\ 5 & 2 \\ 5 & 0\end{array} \frac{2}{5}$

Step 1

Convert the mixed fraction two and three-fifths into an improper fraction.
First, multiply the whole number 2 by the denominator 5 and then add the numerator 3, to equal the new numerator of 13 .
The denominator remains the same as 5 , making the improper fraction of thirteen-fifths.

Step 2

Multiply the improper fraction by the integer.
Then, multiply the numerator 13 by the integer 4 , to equal the new numerator of 52 .
The denominator remains the same as 5 , making an improper fraction of fifty two-fifths.

Step 3
Convert the improper fraction into a mixed fraction.
Next, use short division and divide the numerator by the denominator. 52 (numerator) is divided by 5 (denominator), which is 10 remainder 2 . The remainder 2 is written as a fraction, becoming the numerator and the denominator remains the same as 5 .
Finally, the total value is ten and two-fifths. (Simplify if possible)

Test Questions

1) $2 \frac{3}{5} \times 4=$
2) $2 \frac{1}{3} \times 3=$
3) $1 \frac{5}{6} \times 3=$ \qquad
4) $2 \frac{3}{5} \times 4=$
5) $4 \frac{1}{3} \times 4=$
6) $3 \frac{5}{6} \times 4=$
7) $1 \frac{6}{7} \times 5=$
8) $2 \frac{4}{7} \times 3=$

Divide Proper Fractions

1) $\frac{6}{7} \div 2=\frac{?}{?}$

Strategy Applied

6 represents the numerator.
2 represents the integer.
7 represents the denominator.
$\frac{6}{7} \div 2$ means share six-sevenths equally into two groups.

Step 1

n
d x i

Step 2
$\frac{6}{7 \times 2}=\frac{6}{14}$

Step 3

$$
\frac{6}{14 \div 2=3} \div \frac{3}{7}
$$

Step 1

When dividing a proper fraction, the numerator remains the same and the denominator will change as it is multiplied by the integer.

Step 2
First, the numerator remains the same, 6 .
Then, multiply the denominator 7 by 2 integer, equal to 14 the new denominator, to make six-fourteenths. (simplify if possible)

Step 3

Next, six-fourteenths is a proper fraction that can be simplified.
Simplify the fraction, by dividing the numerator and denominator by the by the same Highest Common Factor (HCF) of 2.
The numerator $\mathbf{6}$ is divided by 2 , equal to $\mathbf{3}$ and the denominator 14 is divided by 2 , equal to 7 .
Finally, total value is three-sevenths.

Test Questions

1) $\frac{6}{7} \div 2=$
2) $\frac{6}{4} \div 2=$
3) $\frac{1}{3} \div 5=$
4) $\frac{2}{3} \div 4=$
5) $\frac{1}{3} \div 3=$
6) $\frac{1}{5} \div 2=$
7) $\frac{2}{5} \div 6=$
8) $\frac{1}{3} \div 4=$

Converted to Percentages and Decimals

1) \qquad $=$ \qquad \% = \qquad

Strategy Applied
5 represents the numerator.
20 represents the denominator.
A percentage value will be out of 100% and a decimal value represents the place values of the tenths and hundredths.

Step 1
$\frac{5}{20 \times 5} \times 5=\frac{25}{100} \quad \frac{25}{100}=\underline{25} \% \quad \frac{25}{100}=\underline{0.25}$

Step 1
Convert the proper fraction into an equivalent fraction with the value of the denominator as $\mathbf{1 0 0}$ representing the hundredths.
First calculate the value of the factor multiplied by twenty to equal one hundred, 20 x ? $=100$, which is 5 .
Multiply the numerator 5 and the denominator 20 by the same factor 5 , equal to 25 the equivalent fraction twenty five-hundredths. 100

Step 2

Then, the value of the equivalent new numerator twenty five converts into a percentage as the same value, 25%.

Step 3
Next, the value of the equivalent new numerator twenty five converts into a decimal as the same value representing the digit values of the tenths and hundredths, to make 0.25 .

Finally, $\frac{5}{20}=\underline{25} \%=\underline{0.25}$

Test Questions

1) $\frac{5}{20}=$ \qquad \% = \qquad
2) \qquad $=$ \qquad \% = \qquad
3) \qquad $=$ \qquad \% = \qquad
4) $\frac{1}{4}=$ \qquad $\%=$ \qquad
5) $\frac{7}{10}$ \qquad \% = \qquad
6) $\frac{3}{4}=$ \qquad \% = \qquad
7) $\frac{2}{5}={ }^{\%}=$
8) $\frac{15}{20}=\quad \%=$ \qquad

Answers

P. 2

1) 9 ten million, 8 million, 7 hundred thousands, 6 ten thousands, 5 thousands, 4 hundreds, 3 tens, 2 ones, 1 tenths, 0 hundredths, 9 thousandths
2) 2 ten million, 5 million, 1 hundred thousands, 2 ten thousands, 4 thousands, 6 hundreds, 1 tens, 9 ones, 1 tenths, 0 hundredths, 2 thousandths
3) 3 ten million, 6 million, 2 hundred thousands, 1 ten thousands, 7 thousands, 9 hundreds, 8 tens, 3 ones, 2 tenths, 1 hundredths, 3 thousandths
4) 4 ten million, 9 million, 3 hundred thousands, 5 ten thousands, 3 thousands, 7 hundreds, 7 tens, 4 ones, 9 tenths, 0 hundredths, 8 thousandths
5) 5 ten million, 8 million, 4 hundred thousands, 0 ten thousands, 6 thousands, 8 hundreds, 6 tens, 1 ones, 9 tenths, 8 hundredths, 7 thousandths
6) 6 ten million, 3 million, 5 hundred thousands, 3 ten thousands, 7 thousands, 9 hundreds, 0 tens, 2 ones, 7 tenths, 6 hundredths, 5 thousandths
7) 7 ten million, 1 million, 6 hundred thousands, 0 ten thousands, 1 thousands, 3 hundreds, 9 tens, 3 ones, 4 tenths, 3 hundredths, 2 thousandths
8) 8 ten million, 2 million, 7 hundred thousands, 2 ten thousands, 1 thousands, 5 hundreds, 4 tens, 8 ones, 0 tenths, 9 hundredths, 8 thousandths
9) 9 ten million, 5 million, 8 hundred thousands, 3 ten thousands, 4 thousands, 6 hundreds, 5 tens, 7 ones, 8 tenths, 7 hundredths, 6 thousandths
10) 9 ten million, 6 million, 0 hundred thousands, 9 ten thousands, 5 thousands, 3 hundreds, 7 tens, 2 ones, 0 tenths, 6 hundredths, 5 thousandths

P. 4

1) $8,000,000,700,000,60,000,0.009$
2) $5,000,000,100,000,20,000,0.002$
3) $6,000,000,200,000,10,000,0.003$
4) $9,000,000,300,000,50,000,0.008$
5) $8,000,000,400,000,00,000,0.007$
6) $3,000,000,500,000,30,000,0.005$
7) $1,000,000,600,000,00,000,0.002$
8) $2,000,000,700,000,20,000,0.008$
9) $5,000,000,800,000,30,000,0.006$
10) $6,000,000,000,000,90,000,0.005$

Answers

P. 6

1) 575,620	1) 389,701
2) 410,099	2) 526,009
3) 487,107	3) 153,400
4) 676,542	4) 888,000
5) 943,782	5) 475,000
6) 802,823	(6) 415,000
7) 910,897	7) 578,000
8) 335,555	8) 386,000
9) 49,913	9) $1,010,000$
10) 9,390	10) $1,190,000$
11) 100,199	11) 282,000
12) 100,049	12) 499,444
13) 10,019	13) 320,000
14) 9,059	14) 335,000

14) 9,059

P. 14

1) 138.496
2) 73.077
3) 17.850
4) 176.217
5) 97.412
6) 19.446
7) 73.072
8) 116.087
9) 17.109
10) 30.512
11) 64.735
12) 142.126
13) 32.990
14) 10.196
P. 8
15) 389,701
P. 10
16) 65.072
17) 102.492
18) 33.971
19) 22.994
20) 27.97
21) 343.905
22) 28.92
23) 34.178
24) 58.708
25) 16.794
26) 38.88
27) 56.893
28) 73.57
29) 46.212
P. 12
30) $1,057,341$
31) 854,080
32) 149,964
33) $1,400,414$
34) $1,280,491$
35) 183,950
36) $1,110,900$
37) $1,351,998$
38) 192,992
39) $1,144,172$
40) 834,342
41) 114,698

P. 16

1) 31,917

P. 18

1) 305,000
2) 792,000
3) 354,000
4) 670,000
5) 415,000
6) 281,000
7) 581,000
8) 750,900
9) 185,100
10) 411,444
11) 100,000
12) 585,800
13) 714,000
14) 785,000

P. 20

1) 146.1
2) 758.01
3) 64.2
4) 516
5) 32.2
6) 779
7) 210
8) 451.2
9) 177.1
10) 377
11) 0.262
12) 5.55
13) 2.85
14) 4.75

Answers

P. 22

1) 162,424
2) 100,944
3) 36,569
4) 500,849
5) 276,195
6) 54,846

P. 24

1) 296.365
2) 478.504
3) 247.902
4) 376.988
5) 217.877
6) 430.9
P. 26
7) 24,000
8) 9,600
9) 3,300
10) 40,000
11) 3,600
12) 4,400
13) 35,000
14) 480
15) 30,000
16) 32,000
17) 30,000
18) 24,000
19) 112,000
20) 150,000

P. 32

238.1

411
30,001
99,990
56,700
586,900
456,005
2,860
885,100
10,100
23,810
5,869
9,999
567

1) 230,678
2) 566,600
3) 255,555
4) 46,018
5) 43,029
6) 32,508

4,560,050
28,600
7) 2,637
8) 668
9) 2,870

101,000
10) 752

238,100
11) 568

58,690
12) 264

99,990
13) 244

5,670
14) 195

P. 28

1) 0.72
P. 30
2) 23.81
3) 41.1
4) $3,000.1$
5) 9,999
6) 5,670
7) 58,690
8) $45,600.5$
9) 286
10) 88,510
11) 1,010
12) 2,381
13) 586.9
14) 999.9
15) 56.7

		$\underline{\text { P. 32 }}$	P. $\mathbf{3 4}$	P. 36
238.1	2,381	1) 230,678	1) 379.180	1) 285,076
411	4,110	2) 566,600	2) 822.348	2) 184,811
30,001	300,010	3) 255,555	3) 248.486	3) 73,884
99,990	999,900	4) 46,018	4) 150.594	4) 56,025
56,700	567,000	5) 43,029	5) 414.990	5) 7,802
586,900	$5,869,000$	6) 32,508	6) 656.543	6) 88,488
456,005	$4,560,050$	7) 2,637	7) 588.474	7) 34,925
2,860	28,600	8) 668	8) 89.352	8) 66,504
885,100	$8,851,000$	9) 2,870	9) 660.472	9) 40,419
10,100	101,000	10) 752		10) 5,106
23,810	238,100	11) 568		
5,869	58,690	12) 264		
9,999	99,990	13) 244		
567	5,670	14) 195		

Answers

P. 38		P. 40		P. 42		
1) 110		1) 0.6		1) 15.6	1.56	0.156
2) 600		2) 0.9		2) 83.18	8.31	0.831
3) 600		3) 0.4		3) 95.8	9.58	0.958
4) 72		4) 5.05		4) 746.7	74.67	7.467
5) 50		5) 0.9		5) 162.4	16.24	1.624
6) 11		6) 32.6		6) 45.6	4.56	0.456
7) 15		7) 1.9		7) 19.3	1.93	0.193
8) 400		8) 2.4		8) 33.1	3.31	0.331
9) 1,200		9) 1.62		9) 22.2	2.22	0.222
10) 30		10) 0.11		10) 25.5	2.55	0.255
11) 400		11) 0.6		11) 30.4	3.04	0.304
12) 600		12) 0.1		12) 253.4	25.34	2.534
13) 1,200		13) 1.3		13) 32.6	3.26	0.326
14) 1,200		14) 0.11		14) 391.5	39.15	3.915
P. 44			P. 46		P. 48	P. 50
1) 2063 rl		$\left.\frac{1}{4} \quad 1\right)$	1) 626 r 9	$\text { or } \frac{3}{4}$	1) 6.52 2) 15.24	$\begin{aligned} & \text { 1) } 51 \\ & \text { 2) } 97 \end{aligned}$
2) 849 r 2		$\frac{2}{9}$	2) 759 r 8	$\text { or } \frac{8}{13}$	3) 1.285 4) 9.45	3) 42 4) 38
3) 730 r 4		$\frac{1}{2}$	3) 336 r 3	$\text { or } \frac{3}{17}$	$\begin{aligned} & \text { 5) } 7.55 \\ & \text { 6) } 12.1 \end{aligned}$	$\begin{aligned} & \text { 5) } 15 \\ & \text { 6) } 91 \end{aligned}$
4) 460 r 6		$\frac{3}{4}$	4) 344 r 15	$5 \text { or } \frac{3}{5}$	7) 6.2 8) 14.6	$\begin{aligned} & \text { 7) } 25 \\ & \text { 8) } 26 \end{aligned}$
5) 224 r 3		$\left.\frac{3}{7} \quad 5\right)$	5) 250 r 2	$\text { or } \frac{2}{29}$	$\begin{array}{r} \text { 9) } 19.65 \\ \text { 10) } 24.63 \end{array}$	9) 236 10) 345
6) 969 r 6		$\frac{6}{7}$	6) 26 r 1	$\text { or } \frac{1}{43}$		11) 6,119 12) 130
7) $1,492 \mathrm{r} 2$		$\frac{1}{3} \quad 7$	7) 38 r 3	$\text { or } \frac{3}{59}$		
8) 759 rl	or	$\frac{5}{6}$	8) 91 r 2	$\text { or } \frac{2}{97}$		

Answers

P. 52	P. 54	P. 56	P. 58
1) 13,331	1) 27	1) 93	1) 67
2) 14,950	2) 3	2) 68	2) 1,530
3) 4,900	3) 329	3) 368	3) 40
4) 15,999	4) 3	4) 590	4) 41
5) 49,900	5) 2	5) 721	5) 56
6) 13,331	6) 50,000	6) 135	6) 3,960
7) 100,001	7) 20	7) 354	7) 29
8) 100,005	8) 2,432	8) 36	8) 124
9) 390,000	9) 13,593	9) 36	9) 5,320
10) 421,999	10) 4,248	10) 25	10) 87
	11) 4	11) 346	11) 40
	12) 13	12) 524	12) 10
	13) 0	13) 125	13) 56
	14) 11		14) 77

P. 60
P. 62
P. 64

1) 162
2) 56 ml
3) $\frac{17}{12}$ or $1 \frac{5}{12}$
4) 1,620
5) 86
6) $\frac{22}{15}$ or $\frac{1}{15}$
7) 60
8) 20
9) 600
10) 56
11) 112
12) $£(0$
13) $\frac{16}{12}$ or $1 \frac{1}{3}$
14) 1,120
15) 124.5
16) $\frac{71}{60}$ or $\frac{111}{60}$
17) 459
18) 360
19) $\frac{47}{30}$ or $1 \frac{17}{30}$
20) 4,590
21) 25
22) 36
23) $£ 0.40$
24) 360
25) 750
26) $\frac{19}{20}$
27) 66
28) 660
29) 207
30) 2,070

Page 85

Answers

P. $\mathbf{6 6}$
$\frac{5}{20}$ or $\frac{1}{4}$
P. 68
P. 70
6) $\frac{3}{8}$

1) $4 \frac{7}{15}$
2) $\frac{11}{8}$
3) $\frac{9}{20}$
4) $\frac{9}{21}$
5) $6 \frac{3}{35}$
6) $2 \frac{21}{40}$
7) $\frac{34}{35}$
8) $\frac{3}{20}$
9) $4 \frac{19}{60}$
10) $4 \frac{1}{42}$
11) $\frac{28}{60}$ or $\frac{7}{15}$
12) $\frac{23}{36}$
13) $5 \frac{1}{3}$
14) $2 \frac{4}{9}$
15) $\frac{23}{35}$
16) $\frac{5}{12}$
17) $7 \frac{17}{30}$
18) $1 \frac{1}{20}$

$$
\text { 6) } 5 \frac{7}{12}
$$

6) $1 \frac{1}{15}$

P. 72

1) $\frac{21}{8}$ or $2 \frac{5}{8}$
2) $\frac{35}{6}$ or $\frac{5}{6}$
3) $\frac{60}{8}$ or $7 \frac{1}{2}$
4) $\frac{21}{8}$ or $2 \frac{5}{8}$
5) $\frac{12}{25}$
6) $\frac{1}{48}$
7) $\frac{40}{7}$ or $5 \frac{5}{7}$
8) $\frac{32}{5}$ or $6 \frac{2}{5}$
9) $\frac{9}{28}$
10) $\frac{9}{14}$
11) $\frac{18}{7}$ or $2 \frac{4}{7}$
12) $\frac{36}{8}$ or $\frac{4}{2}$
13) $\frac{1}{8}$
14) $\frac{12}{35}$

Answers

P. 76
P. 78

1) $\frac{52}{5}$ or $10 \frac{2}{5}$
2) $\frac{3}{7}$
3) $\frac{21}{3}$ or 7
4) $\frac{3}{4}$
5) $\frac{33}{6}$ or $5 \frac{1}{2}$
6) $\frac{7}{15}$
7) $\frac{52}{5}$ or $10 \frac{2}{5}$
8) $\frac{1}{6}$
9) $\frac{52}{3}$ or $17 \frac{1}{3}$
10) $\frac{1}{9}$
11) $\frac{92}{6}$ or $15 \frac{1}{6}$
12) $\frac{1}{10}$
13) $\frac{65}{7}$ or $9 \frac{2}{7}$
14) $\frac{1}{15}$
15) $\frac{54}{7}$ or $\frac{7}{7}$
16) $\frac{1}{12}$

P. 80

1)	25%	0.25
2)	80%	0.80
$3)$	30%	0.30
$4)$	25%	0.25
5)	70%	0.70
$6)$	75%	0.75
$7)$	40%	0.40
$8)$	75%	0.75

Glossary

Common Factor is a number which is a factor of two or more other numbers, e.g. 3 is a common factor of the numbers 9 and 30 .

Common Multiple is an integer which is a multiple of a given set of integers, e.g. 24 is a common multiple of $2,3,4,6,8$ and 12 .

Decimal Fraction is tenths, hundredths, thousandths etc. represented by digits following a decimal point. E.g. 0.125 is equivalent to $1 / 10+2 / 100+$ $5 / 1000$ or $1 / 8$. The decimal fraction representing $1 / 8$ is a terminating decimal fraction since it has a finite number of decimal places. Other fractions such as $1 / 3$ produce recurring decimal fractions, these have a digit or group of digits that is repeated indefinitely.

Denominator is the number written below the line i.e. the divisor. e.g. in the fraction $2 / 3$ the denominator is 3 .

Digit Value is the value of a digit that relates to its position or place in a number. e.g. in 82 the digits represent 8 tens and 2 ones.

Equivalent Fraction are fractions with the same value as another. e.g. $4 / 8,5 / 10,8 / 16$ are all equivalent fractions and all are equal to $1 / 2$.

Exchanging is to exchange a number for another of equal value. The process of regrouping is used in some standard compact methods of calculation. e.g.: 'carrying figures/exchanging' in addition, multiplication or division; and 'decomposition' in subtraction.

Factor is when a number, can be expressed as the product of two numbers, these are factors of the first. E.g. 1, 2, 3, 4, 6 and 12 are all factors of 12 because $12=1 \times 12=2 \times 6=3 \times 4$.

Glossary

Highest Common Factor (H.C.F.) is the common factor of two or more numbers which has the highest value.
e.g. 16 has factors $1,2,4,8,16.24$ has factors $1,2,3,4,6,8,12,24$.

56 has factors $1,2,4,7,8,14,28,56$. The common factors of 16,24 and 56 are 1, 2, 4 and 8 . Their highest common factor is 8 .

Improper Fraction is an improper fraction has a numerator that is greater than its denominator. Example: 9/4 is improper and could be expressed as the mixed number $21 / 4$.

Integer is any of the positive or negative whole numbers and zero. e.g. ... $2,-1,0,+1,+2 \ldots$

Lowest Common Multiple (L.C.M.) is the common multiple of two or more numbers, which has the least value. E.g. 3 has multiples 3, 6, 9, 12, 15 4 has multiples $4,8,12,16,20,24 \ldots$ and 6 has multiples $6,12,18,24,30 \ldots$ The common multiples of 3,4 and 6 include 12, 24 and 36 . The lowest common multiple of 3,4 and 6 is 12 .

Mixed Fraction is a whole number and a fractional part expressed as a common fraction. e.g. $11 / 3$ is a mixed fraction or mixed number.

Mixed Number is a whole number and a fractional part expressed as a common fraction. Example: $2 \frac{1 / 4}{}$ is a mixed number. Also known as a mixed fraction.

Multiple is the result of multiplying a number by an integer, e.g. 12 is a multiple of 3 because $3 \times 4=12$.

Non-Unit Fraction is a fraction that has a value of 2 or more as the numerator and whose denominator is a non-zero integer. E.g. 1/2, 1/3.

Glossary

Numerator is the number written on the top- the dividend (the part that is divided). In the fraction $2 / 3$, the numerator is 2 .

Operations that, when they are combined, leave the entity on which they operate unchanged. Examples: addition and subtraction are inverse operations e.g. $5+6-6=5$. Multiplication and division are inverse operations e.g. $6 \times 10 \div 10=6$.

Partition 1) To separate a set into subsets. 2) To split a number into component parts. e.g. the two-digit number 38 can be partitioned into $30+8$ or $19+19$. 3) A model of division. e.g. $21 \div 7$ is treated as 'how many sevens in 21?'

Percentage 1) A fraction expressed as the number of parts per hundred and recorded using the notation $\%$. E.g. One half can be expressed as 50%; The whole can be expressed as 100% 2) Percentage can also be interpreted as the operator 'a number of hundredths of'. E.g. 15% of Y means $15 / 100 \times \mathrm{Y}$.

Place Holder In decimal notation, the zero numeral is used as a place holder to denote the absence of a power of 10 .

Place Value is the value of a digit that relates to its position or place in a number. e.g. in 1482 the digits represent 1 thousand, 4 hundred, 8 tens and 2 ones respectively; in 12.34 the digits represent 1 ten, 2 ones, 3 tenths and 4 hundredths respectively.

Proper Fraction has a numerator that is less than its denominator so $3 / 4$ is a proper fraction, whereas $4 / 3$ is an improper fraction (i.e. not proper).

Glossary

Regrouping is to exchange a number for another of equal value. The process of regrouping is used in some standard compact methods of calculation. e.g.: 'carrying figures/exchanging' in addition, multiplication or division; and 'decomposition' in subtraction.

Remainder in the context of division requiring a whole number answer (quotient), the amount remaining after the operation. e.g. 29 divided by $7=4$ remainder 1 .

Simplify Fraction is to simplify a fraction down to its lowest terms. The numerator and denominator are divided by the same number e.g. $4 / 8=2 / 4$, also to 'reduce' a fraction.

When the numerator and denominator are both divided by their highest common factor the fraction is said to have been cancelled down to give the equivalent fraction in its lowest terms. e.g. 18/30 $=3 / 5$ (dividing numerator and denominator by 6).

Unit Fraction is a fraction that has 1 as the numerator and whose denominator is a non-zero integer. e.g. $1 / 2,1 / 3$.

