Year 5

Arithmetic

Workbook

by Richard Brown

Contents Page

Place Value
How Many 1-2
Digit Value 3-4
Add 5- 6
More Than 10,000s 7-8
Number Sequence 9- 10
Decimals 11- 12
Column Addition 13-14
Column Addition with Decimals 15-16
Find the Missing Number 17-18
Subtract
Compensate 19-20
More Than 10,000s 21-22
Number Sequence 23-24
Decimals 25-26
Column Subtraction 27-28
Column Subtraction with Decimals 29- 30
Find the Missing Number 31-32
Multiply
Multiples of 10s 33- 36
x10, x100 and x1,000 37-38
Add and Subtract Indices 39-40
Short Multiplication 41-42
Short Multiplication with Decimals 43-44
Long Multiplication 45-46
Find the Missing Number 47-48

Contents Page

Divide

Multiples of 10 s 49-52
$\div 10, \div 100$ and $\div 1,000 \quad$ 53-54
Short Division 55-56
Short Division with Decimals 57-58
Find the Missing Number 59-60

Rounding

To Nearest 10,000 61-62
To Nearest 100,000 63-64
To Nearest 1,000,000 65-66

Percentages

Percentage of a Quantity 67-68

Fractions

Fraction of a Quantity 69-70
Add Fractions 71-72
Subtract Fractions 73-74
Multiply Fractions 75-76
Multiply Mixed Fractions 77-78
Find the Missing Number 79-80

Answers and Glossary 81-91

Key Language and Representations

Reasoning Scenarios are the arithmetic test questions applied to a real-life reasoning and problem solving scenario.

Number Lines are used to count forwards and backwards in whole, decimal numbers and fractional numbers.

10	10.11	10.12	10.13	10.14	10.15	10.16	10.17	10.18	10.19

Concrete Objects are manipulated or handled to calculate and represent a number sentence i.e. base 10, cuisenaire, fraction tiles, metric rulers, .

Formal Written Methods set out working in columnar form.

Ladder Method

\mathbf{x}| 1 | $2 \quad 9$ |
| ---: | ---: |
| | 7 |
| | $6 \quad 3$ |

140
+700
1

Long Division

| | 0 | 6 | 7 |
| ---: | ---: | ---: | ---: | ---: |
| r 1 | | | |
| 2 | 1 | 13 | 15 |

$-\frac{0}{1} 3$
-12
$\begin{array}{r}-14 \\ \hline 1\end{array}$

Grid Method

\mathbf{x}	200	60	7
4	800	240	28

$\underline{\text { Short Multiplication }}$

$\underline{\text { Short Division }}$
$2 \longdiv { 4 } \begin{array} { r r r r r } { 0 } & { 6 } & { 7 } & { \text { r } 1 } \end{array}$

4 | 0 | 4 | 3 |
| ---: | ---: | ---: |
| $4^{1} 7$ | 13 | |

Strategy Applied is when formal written method is used to calculate an arithmetic question or a reasoning and problem solving scenario. Explained using appropriate mathematical language, proven using concrete objects that can be manipulated, shown with pictorial representations to visualise the calculations, enabling deeper understanding.

Part Whole Models are pictorial mathematical images to represent an arithmetic question or reasoning and problem solving scenario.

Bar Models are an image, that pictorially represents a calculation.

58	58	58	58	58	58
348					

$$
\frac{2}{8}+\frac{5}{8}=\frac{7}{8}
$$

$$
\frac{9}{10}-\frac{3}{10}=\frac{6}{10}
$$

Number Grid

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109
110	111	112	113	114	115	116	117	118	119
120	121	122	123	124	125	126	127	128	129
130	131	132	133	134	135	136	137	138	139
140	141	142	143	144	145	146	147	148	149
150	151	152	153	154	155	156	157	158	159

Multiplication Square

x	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0
1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100
11	22	33	44	55	66	77	88	99	110
12	24	36	48	60	72	84	96	108	120

Decimal Number Grid

0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9
3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9
4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9
5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9
6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9
7.0	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9
8.0	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9
9.0	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9
10.0	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9
11.0	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9
12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9
13.0	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9
14.0	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9
15.0	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9

Fraction Walls

1 Whole																	
1								1									
1				1				1					1				
1		1		1		1		1			1		1		1		
	8	8		8		8		8			8		8		8		
1	1	1	1	1	1	1	1	1		1	1	1	1	1	1		
16	16	16	16	16	16	16	16	16		16	16	16	16	16	16		6

1 Whole									
$\frac{1}{2}$									$\frac{1}{2}$
$\frac{1}{3}$		$\frac{1}{3}$	$\frac{1}{3}$						
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$				

How Many

The number $7,654,321$ is made up of how many $\mathbf{1 , 0 0 0 , 0 0 0 s}$ (millions), 100,000s (hundred thousands) and $\mathbf{1 0 , 0 0 0}$ s (ten thousands)?

1) $7,654,321=$ \qquad

In Maths a number or figure e.g. 7,654,321, is made up of the digits $7,6,5,4,3,2$ and 1.
Each digit has a worth, otherwise known as its place value.
The number seven million, six hundred and fifty four thousand, three hundred and twenty one is a 7-digit number.
The digits represent the following column place values the $1,000,000$ s, $100,000 \mathrm{~s}, 10,000 \mathrm{~s}, 1,000 \mathrm{~s}, 100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s .

Place Value Grid

$\underline{1,000,000 \mathrm{~s}}$	$\underline{100,000 \mathrm{~s}}$	$\underline{10,000 \mathrm{~s}}$	$\underline{1,000 \mathrm{~s}}$	$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 \mathrm{~s}}$
7	6	5	4	3	2	1

Strategy Applied

The number seven million, six hundred and fifty four thousand, three hundred and twenty one is represented on a Place Value Grid as above.

First, write 1 in the 1 s column place value, which is also how many ones there are in the 1 s column, 1 one.

Then, write 2 in the 10 s column place value, which is also how many tens there are in the 10s column, 2 tens.

Next, write 3 in the 100s column place value, which is also how many hundreds there are in the $\mathbf{1 0 0}$ s column, 3 hundreds.

Then, write 4 in the $\mathbf{1 , 0 0 0}$ s column place value, which is also how many thousands there are in the $\mathbf{1 , 0 0 0}$ s column, 4 thousands.

Next, write 5 in the $\mathbf{1 0 , 0 0 0}$ s column place value, which is also how many ten thousands there are in the $\mathbf{1 0 , 0 0 0}$ s column, 5 ten thousands.

Then, write $\mathbf{6}$ in the $\mathbf{1 0 0 , 0 0 0}$ s column place value, which is also how many hundred thousands there are in the $\mathbf{1 0 0 , 0 0 0}$ s column, 6 hundred thousands.

Next, write 7 in the $\mathbf{1 , 0 0 0 , 0 0 0}$ s column place value, which is also how many millions there are in the $\mathbf{1 , 0 0 0 , 0 0 0}$ s column, 7 million.

Finally, the Place Value Grid above shows how many $\mathbf{1 , 0 0 0 , 0 0 0 s}$, $100,000 \mathrm{~s}$ and 10,000 s there are, 7 millions, 6 hundred thousands, 5 ten thousands.

Test Questions

How many $\mathbf{1 , 0 0 0 , 0 0 0 s}$ (millions), $\mathbf{1 0 0 , 0 0 0 s}$ (hundred thousands) and 10,000s (ten thousands) in each number?

1) $7,654,321=$
2) $3,537,902=$
3) $5,124,619=$ \qquad 7) $1,601,393=$
4) $6,217,983=$
5) $2,721,548=$
6) $9,353,774=$ \qquad
7) $5,834,657=$ \qquad
8) $8,406,861=$ \qquad
9) $6,095,372=$ \qquad

Digit Value

What is the digit value of the $\mathbf{1 , 0 0 0 , 0 0 0}$ (millions), $\mathbf{1 0 0 , 0 0 0 s}$ (hundred thousands) and $\mathbf{1 0 , 0 0 0}$ s (tens thousands) in the number 7,654,321?

1) $7,654,321=$

In Maths a number or figure e.g. 7,654,321, is made up of the digits $7,6,5,4,3,2$ and 1.
Each digit has a worth, otherwise known as its place value.
The number seven million, six hundred and fifty four thousand, three hundred and twenty one is a 7 -digit number.
The digits represent the following column place values the $1,000,000$ s, $100,000 \mathrm{~s}, 10,000 \mathrm{~s}, 1,000 \mathrm{~s}, 100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s .

Place Value Grid

$\underline{1,000,000 \mathrm{~s}}$	$\underline{100,000 \mathrm{~s}}$	$\underline{10,000 \mathrm{~s}}$	$\underline{1,000 \mathrm{~s}}$	$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 \mathrm{~s}}$
7	6	5	4	3	2	1

Strategy Applied

The number seven million, six hundred and fifty four thousand, three hundred and twenty one is represented on a Place Value Grid as above.

First, in the 1 s column the value of the digit is worked out by multiplying how many ones there are, 1 by 1 (1 s column), which is 1 .

Then, in the $\mathbf{1 0}$ s column the value of the digit is worked out by multiplying how many tens there are, 2 by 10 ($\mathbf{1 0} \mathbf{s}$ column), which is $\mathbf{2 0}$.

Next, in the 100s column the value of the digit is worked out by multiplying how many hundreds there are, 3 by 100 ($\mathbf{1 0 0}$ s column), which is 300 .

Then, in the 1,000 s column the value of the digit is worked out by multiplying how many thousands there are, 4 by $1,000(\mathbf{1 , 0 0 0}$ s column), which is 4,000 .

Next, in the $\mathbf{1 0 , 0 0 0}$ s column the value of the digit is worked out by multiplying how many ten thousands there are, 5 by $10,000(\mathbf{1 0 , 0 0 0}$ column), which is $\mathbf{5 0 , 0 0 0}$.

Then, in the $\mathbf{1 0 0} \mathbf{0} \mathbf{0 0 0}$ s column the value of the digit is worked out by multiplying how many hundred thousands there are, 6 by 100,000 $(100,000 \mathrm{~s}$ column), which is 600,000 .

Next, in the $\mathbf{1 , 0 0 0 , 0 0 0}$ s column the value of the digit is worked out by multiplying how many millions there are, 7 by $1,000,000(1,000,000$ s column), which is $7,000,000$.

Finally, the digit value of the $\mathbf{1 , 0 0 0 , 0 0 0 s}, \mathbf{1 0 0}, \mathbf{0 0 0}$ s and $\mathbf{1 0 , 0 0 0}$ s digits is $7,000,000,600,000$ and 50,000 .

Test Questions

What is the digit value of the $\mathbf{1 , 0 0 0 , 0 0 0 s}$ (millions), $\mathbf{1 0 0 , 0 0 0 s}$ (hundred thousands) and $\mathbf{1 0 , 0 0 0}$ (tens thousands) in each number?

1) $7,654,321=$
2) $3,537,902=$
3) $5,124,619=$ \qquad 7) $1,601,393=$
4) $6,217,983=$ \qquad 8) $2,721,548=$
5) $9,353,774=$ \qquad
6) $5,834,657=$ \qquad
7) $8,406,861=$ \qquad
8) $6,095,372=$ \qquad

Compensate

1) $99+35=$?

Word Problem

Ninety nine pounds is the current balance of a bank account.
It is increased by a further thirty five pounds.
What is the new bank balance?

Step 1

Step 2

Strategy Applied

When the value of a number is near in value to a multiple of $10 \mathrm{~s}, \mathbf{1 0 0}$ s, $1,000 \mathrm{~s}$, it can be more efficient to round up/down to an appropriate multiple, before working out the calculation or number sentence.
Step 1
Compensate by rounding 99 up to 100 , by adding 1 .
Then from one hundred count on thirty five more, equal to one hundred and thirty five.
Step 2
Decompensate by subtracting 1 from one hundred and thirty five, to equal the total value of one hundred and thirty four.

Part Whole Model

$\underline{\text { Bar Model }}$

Test Questions

1) $99+35=$
2) $999+479=$ \qquad
3) $9,999+361=$ \qquad
4) $98+205=$ \qquad
5) $998+406=$ \qquad
6) $9,998+2,100=$ \qquad
7) $97+1,820=$ \qquad
8) $997+3,009=$ \qquad
9) $9,997+403=$ \qquad
10) $96+140=$ \qquad
11) $996+903=$ \qquad
12) $9,996+8,036=$ \qquad
13) $95+216=$ \qquad
14) $995+1,307=$ \qquad
15) $9,995+5,038=$ \qquad

More Than 10,000

1) $370,000+241,000=?$

Word Problem

A value of three hundred and seventy thousand is increased by two hundred and forty one thousand.
What is the total value of the two values?

Number Line

Strategy Applied

Partition 241,000 into its digit values of $200,00+40,000+1,000$.

First, draw a number line and write three hundred and seventy thousand at the start.

Then, from 370,000 count on 200,000 more in multiples of 100,000 s, equal to five hundred and seventy thousand.

Next, from 570,000 count on 40,000 more in multiples of $10,000 \mathrm{~s}$, equal to six hundred and ten thousand.

Then, from 610,000 count on 1,000 more in multiples of 1,000 s, equal to six hundred and eleven thousand.

Finally, the missing number is 611,000 .

Part Whole Model

Bar Model

370,000	241,000
$? 311,000$	

Test Questions

1) $370,000+241,000=$ \qquad
2) $230,000+370,000=$ \qquad
3) $150,000+63,000=$ \qquad
4) $105,000+326,000=$ \qquad
5) $840,000+70,000=$ \qquad
6) $370,000+95,000=$ \qquad
7) $210,000+450,000=$ \qquad
8) $150,000+75,000=$ \qquad
9) $220,000+290,000=$ \qquad
10) $840,000+55,000=$ \qquad
11) __ $+9,200=80,400$
12) \qquad
13) $\ldots+5,810=63,000$
14) \qquad $+2,510=40,050$

Number Sequence

In the number sequence below, find the next two consecutive terms.

1) $\begin{array}{llll}12.2 & 12.5 & 12.8 & ? \\ ?\end{array}$

Word Problem

The number sequence is modelled during a maths lesson.
The next two consecutive terms are missing and the Teacher would like the children to work them out with their working partners what they are.

Number Line

Strategy Applied

Work out the number sequence, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule.

First, count forwards from twelve point two to twelve point five equal to zero point three, the rule is +0.3 .

Then, count forwards from twelve point five to twelve point eight equal to zero point three, the rule is +0.3 .

The rule is +0.3 (count on zero point three) to each of the numbers in the number sequence.
Continue this number pattern to find the next two consecutive terms.

Next, from twelve point eight count on zero point three more, equal to thirteen point one.

Then, from thirteen point one count on zero point three more, equal to thirteen point four.

Finally, the next two consecutive terms in the number sequence are thirteen point one and thirteen point four.

Decimal Number Grid

12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9
13.0	13.1	$\boldsymbol{1 3 . 2}$	$13.3 \rightarrow 13.4$	13.5	13.6	13.7	13.8	13.9	

Test Questions

Decimals

1) $2.14+1.835=?$

Word Problem

Journey A is two point one four kilometres and Journey B is one point eight three five kilometres. What is the total distance of both journeys?

Partitioning

2	\cdot	0	0	0	+1	.	0	0	0	$=$	3	.	0	0	0
0	\cdot	1	0	0	+0	.	8	0	0	$=$	0	.	9	0	0
0	\cdot	0	4	0	+0	.	0	3	0	$=$	0	.	0	7	0
0	\cdot	0	0	0	+	.	0	0	5	$=$0 . 0 0 5 3 . 9 7 5$+$					

Strategy Applied

Partition both numbers into 1s, 10ths, 100ths, 1000ths and add together their relative digit values.
$2.14=2+0.1+0.04 \quad 1.835=1+0.8+0.03+0.005$
First, add the 1 s digit values of 2 and 1 , equal to three.
Then, add the 10 ths digit values of 0.1 and 0.8 , equal to zero point nine.
Next, add the 100 ths digit values of 0.04 and 0.03 , equal to zero point zero seven.
Then, add the 1000 ths digit values of 0.000 and 0.005 , equal to zero point zero zero five.
Next, use column addition to add the values of $3+0.9+0.07+0.005$.
Finally, 2.14 plus 1.835 is equal to 3.975 .

Part Whole Model

Bar Model

2.14	1.835
? 3.975	

Test Questions

1) $2.14+1.835=$ \qquad
2) $1.36+2.513=$ \qquad
3) $2.61+6.352=$ \qquad
4) $7.58+1.416=$ \qquad
5) $6.23+1.759=$ \qquad
6) $4.75+2.138=$ \qquad
7) $3.79+4.205=$ \qquad
8) $6.13+3.982=$ \qquad
9) $1.97+8.134=$ \qquad
10) $3.65+3.256=$ \qquad
11) $=5.40+2.209$
12) $\ldots=6.70+3.348$
13) $\quad=5.50+1.768$
14) \qquad $=7.20+1.952$

Column Addition

1) $491,257+218,278=?$

Step 1

4	9	1	2	5	7
2	1	8	2	7	8
			3	5	

Strategy Applied

Step 1
First, in the $1 \mathbf{s}$ column add altogether, $7+8$, equals 15 ones $(10+5)$.
Write 5 in the total value of the 1 s column, then exchange/regroup the 10 ones into 1 ten to the 10 s column and write 1 below the total value line of the 10 s column.
Then, in the 10s column add altogether, $5+7+1$, equals 13 tens $(100+30)$.
Write 3 in the total value of the 10s column, then exchange/regroup the 10 tens into 1 hundred to the 100s column and write 1 below the total value line of the 100 s column.
Step 2
Next, in the 100s column add altogether, $2+2+1$, equals 5 hundreds (500).

Write 5 in the total value of the $\mathbf{1 0 0}$ s column.
Then, in the $\mathbf{1 , 0 0 0}$ s column add altogether, $1+8$, equals 9 thousands $(9,000)$.
Write 9 in the total value of the 1,000 s column.
Step 3
Next, in the $\mathbf{1 0 , 0 0 0}$ s column add altogether, $9+1$, equals 10 ten thousands $(100,000+0)$.
Write 0 in the total value of the $\mathbf{1 0 , 0 0 0}$ s column, then exchange/ regroup the 10 ten thousands into 1 hundred thousand to the $\mathbf{1 0 0 , 0 0 0}$ s column and write 1 below the total value line of the $\mathbf{1 0 0 , 0 0 0}$ s column.

Finally, in the $\mathbf{1 0 0} \mathbf{0} \mathbf{0 0 0} \mathbf{s}$ column add altogether, $4+2+1$, equals 7 hundred thousands $(700,000)$. Write 7 in the total value of the 100,000 s column.
Total value is 709,535 .

Part Whole Model

Bar Model

Test Questions

Column Addition with Decimals

1) $38 \cdot 453+15 \cdot 271=$?

Step 1
Step 2
Step 3

Strategy Applied

Step 1
First, in the $\mathbf{1 , 0 0 0}$ ths column add altogether, $3+1$, equals 4 thousandths (0.004).

Write 4 in the total value of the $\mathbf{1 , 0 0 0}$ ths column.
Then, in the 100 ths column add altogether, $5+7$, equals 12 hundredths (0.1 + 0.02).

Write 2 in the total value of the 10ths column, then exchange/regroup the 10 hundredths into 1 tenth to the 10ths column and write 1 below the total value line of the 10ths column.

Step 2

Next, in the 10ths column add altogether, $4+2+1$, equals 7 tenths (0.7). Write 7 in the total value of the 10 ths column.

Step 3

Then, in the 1 s column add altogether, $8+5$, equals 13 ones $(10+3)$.
Write 3 in the total value of the 1 s column, then exchange/regroup the 10 ones into 1 ten to the 10 s column and write 1 below the total value line of the 10 s column.
Finally, in the 10 s column add altogether, $3+1+1$, equals 5 tens (50). Write 5 in the total value of the 10 s column.
Total Value is 53.724.

Part Whole Model

Bar Model

38.453	15.271
? 53.724	

Test Questions

3) $5 \quad 5 \quad 4 \quad 3$

37.
$+\quad 23$

5) $3 \quad 5 \quad 4 \quad 7 \quad 9$
$+\begin{array}{r}18 \quad 283 \\ \hline\end{array}$

6) | 8 | 0 | \cdot | 7 | 4 |
| ---: | ---: | ---: | ---: | ---: |
| 2 | 9 | \cdot | 1 | 6 |
| + | 5 | . | 8 | 6 |
| | | . | | |

8) 44.560
$+26.348$
9) 79.57
63
54
$+\quad 4$$\quad 480$
\qquad

14) 79 . 68

64.
64.
$+\quad 29$

12) $8 \quad 6 \quad 9 \quad 38$
13) $23 \cdot 127$

$+$	7	7	8	8

$+$

Find the Missing Number

1) $600+4,000-1,250=?$

Word Problem

Kavalli has six hundred pounds, Eliza has a further four thousand pounds. Jaylon has one thousand, two hundred and fifty pounds less than his two friends amounts combined.

Strategy Applied

There are two operations in the number sentence, add and subtract. First add $4,000+600$ together and then subtract the 1,250

Step 1

4	0	0	0
	6	0	0
4,	6	0	0

40000
$+\quad 6000$
4,6000

$$
\text { Step } 2
$$

9			
4	$6^{10}{ }^{14}$		
1	2	5	0
3,	3	5	0

Step 1

Then, use a mental strategy or the written method of column addition to calculate $4,000+600$, which is equal to 4,600 .

Step 2
Then, use a mental strategy or the written method of column subtraction to calculate $4,600-1,250$, which is equal to 3,350 .

Test Questions

1) $600+4,000-1,250=$
2) $900+5,000-2,250=$ \qquad
3) $368,701+1,000+1,000=$ \qquad
4) $499,999+1,000+1,000=$ \qquad
5) $288,888+2,000+2,000=$ \qquad
6) $479,999+2,000+2,000=$ \qquad
7) $238,888+3,000+3,000=$ \qquad
8) $\ldots+5,314=7,314-1,000$
9) $\ldots+6,425=8,425-1,000$
10) $500+6,000-8,150=$ \qquad
11) $800+7,000-9,150=$ \qquad
12) $\ldots+3,528=9,528-2,000$
13) $\ldots+1,012=5,012-2,000$
14) $738,035+7,000+7,000=$ \qquad

Compensate

1) $101-45=?$

Word Problem

Crate A contains one hundred and one cans. Crate B has forty five cans less. How many cans in Crate B?

Strategy Applied

When the value of a number is near in value to a multiple of $\mathbf{1 0 s}, \mathbf{1 0 0}$ or $\mathbf{1 , 0 0 0} \mathbf{s}$, it can be more efficient to round down to the appropriate multiple, before working out the calculation or number sentence.

Step 1

Step 2

Step 1

Compensate by rounding 101 down to 100 , by subtracting 1 .
Then from one hundred count back forty five less, equal to fifty five.

Step 2
Decompensate by adding 1 to fifty five, to equal the total value of fifty six.

Part Whole Model

Bar Model

Test Questions

1) $101-45=$
2) $1,001-479=$ \qquad
3) $102-61=$ \qquad
4) $1,002-205=$ \qquad
5) $103-46=$ \qquad
6) $1,003-210=$ \qquad
7) $104-82=$ \qquad
8) $1,004-309=$ \qquad
9) $105-43=$ \qquad
10) $1,005-140=$ \qquad
11) $106-93=$ \qquad
12) $1,006-836=$ \qquad
13) $107-16=$ \qquad
14) $1,007-307=$ \qquad

More Than 10,000

1) $980,000-452,000=?$

Word Problem

Nine hundred and eighty thousand containers pass through a
Shipping Port las year. Due to a recession, there will be four hundred and fifty two thousand less containers this year. How many will that be?

Number Line

Strategy Applied

Partition 452,000 into its digit values of $\mathbf{1 0 0 , 0 0 0}, \mathbf{1 0 , 0 0 0 s}, \mathbf{1 , 0 0 0}$ s, $400,000+50,000+2,000$.

First, draw a number line and write nine hundred and eighty thousand at the end.

Then, from 980,000 count back 400,000 less in multiples of $100,000 \mathrm{~s}$, equal to five hundred and eighty thousand.

Next, from 580,000 count back 50,000 less in multiples of 10,000 s, equal to five hundred and thirty thousand.

Then, from 530,000 count back 5,000 less in multiples of $1,000 \mathrm{~s}$, equal to five hundred and twenty eight thousand.

Finally, the missing number is five hundred and twenty eight thousand.

Part Whole Model

980,000	
452,000	$? 528,000$

Test Questions

1) $980,000-452,000=$
2) $760,000-48,000=$ \qquad
3) $900,000-358,000=$ \qquad
4) $750,000-60,000=$ \qquad
5) $820,000-127,000=$ \qquad
6) $980,000-193,000=$ \qquad
7) $760,000-80,000=$ \qquad
8) $800,000-781,000=$ \qquad
9) $840,000-80,000=$ \qquad
10) $820,000-796,000=$ \qquad
11) $560,000-50,000=$ \qquad
12) $900,000-672,000=$ \qquad
13) $950,000-90,000=$ \qquad
14) $930,000-685,000=$ \qquad

Number Sequence

In the number sequence below, find the next two consecutive terms.

1) $\begin{array}{llll}15.9 & 15.5 & 15.1 & ? \\ ?\end{array}$

Word Problem

A number sequence is modelled to a class during maths.
The next two consecutive terms are missing and the Teacher would like the children to work them out with their working partners what they are.

Number Line

Strategy Applied

Work out the number sequence, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule.

First, count backwards from fifteen point nine to fifteen point five equal to zero point four, the rule is -0.4.

Then, count backwards from fifteen point five to fifteen point one equal to zero point four, the rule is -0.4 .

The rule is -0.4 (count back zero point four) from each of the numbers in the number sequence.
Continue this number pattern to find the next two consecutive terms.

Next, from fifteen point one count back zero point four less, equal to fourteen point seven.

Then, from fourteen point seven count back zero point four less, equal to fourteen point three.

Finally, the next two consecutive terms in the number sequence are fourteen point seven and fourteen point three.

Decimal Number Grid

14.0	14.1	14.2	$14.3 \&$	14.4	14.5	$14.6 \&$	14.7	14.8	14.9
15.0	15.1	15.2	15.3	$15.4 母$	15.5	15.6	15.7	$15.8 \nless 15.9$	

Test Questions

1) $15.9 \quad 15.5 \quad 15.1$ \qquad 8) $8.5 \quad 8 \quad 7.5$
2) $11.9 \quad 11.7 \quad 11.5$ \qquad
3) $18 \quad 10 \quad 2$ \qquad
4) $-3.05-5.05-7.05$ \qquad
5) 63

57
51 \qquad
4) $950 \quad 800 \quad 750$ \qquad 11) $\frac{8}{9} \quad \frac{6}{9} \quad \frac{4}{9}$ \qquad
5) $325 \quad 200 \quad 75$ \qquad
\qquad
6) $\quad-195 \quad-260 \quad-325$ \qquad
7) 5.2
$4.5 \quad 3.8$ \qquad
12) $\frac{9}{8} \quad \frac{7}{8} \quad \frac{5}{8}$
\qquad

Decimals

1) $2.135-1.024=?$

Word Problem

The capacity of a jug is two point one three five litres of liquid.
It is filled with one point zero two four litres of milk.
How many more litres of milk can the jug hold?

Partitioning

2	.	0	0	0	-	1	.	0	0	0	$=$	1	.	0	0	0
0	\cdot	1	0	0	-	0	.	0	0	0	$=$	0	.	1	0	0
0	.	0	3	0	-	0	.	0	2	0	$=$	0	.	0	1	0
0	.	0	0	5	-	0	.	0	0	4	$=$0 . 0 0 1 1 . 1 1 1$+$					

Strategy Applied

Partition both numbers into $\mathbf{1 s}$, 10 ths, 100 ths, 1000 ths and subtract their relative digit values.
$2.135=2+0.1+0.03+0.005 \quad 1.024=1+0.0+0.02+0.004$
First, subtract the $1 \mathbf{s}$ digit values of 2 and 1 , equal to one.
Then, subtract the 10 ths digit values of 0.1 and 0.0 , equal to zero point one.
Next, subtract the 100 ths digit values of 0.03 and 0.02 , equal to zero point zero one.
Then, subtract the 1000 ths digit values of 0.005 and 0.004 , equal to zero point zero zero one.
Next, use column addition to add the values of $1+0.1+0.01+0.001$. Finally, the value of the missing number is one point one one one.

Part Whole Model

Bar Model

Test Questions

1) $2.135-1.024=$ \qquad
2) $2.579-1.358=$ \qquad
3) $6.324-2.11=$ \qquad
4) $7.546-1.43=$ \qquad
5) $6.298-1.79=$ \qquad
6) $4.719-2.108=$ \qquad
7) $4.407-3.106=$ \qquad
8) $6.105-3.004=$ \qquad
9) $8.10-1.10=$ \qquad
10) $3.605-3.203=$ \qquad
11) $=5.436-2.42$
12) $\quad=6.718-3.13$
13)__ $=5.574-1.27$
13) \qquad $=7.203-1.20$

Column Subtraction

1) $53,600-37,678=?$

Step 1

		59		
5	3			
3	7	6	7	8

Step 2

Step 3

$\mathbf{4}$	12	15	9		
$\mathbf{5}$	$\mathbf{3}$	6	${ }^{1}$	$\mathbf{0}$	$\mathbf{1}$
$-\mathbf{3}$	$\mathbf{7}$	$\mathbf{6}$	7	8	
1	5,	9	2	2	

Strategy Applied

Step 1
In the 1 s column, 0 subtract 8 , you cannot do as 0 is a lower value than 8 . From the 10s column, exchange/regroup 1 ten from the 0 tens, you cannot do this as the value of the tens is zero.
Instead exchange/regroup 1 hundred from the 6 hundreds in the 100s column to the $\mathbf{1 0}$ s column.
Cross out the 6 hundreds and write 5 hundreds above, then write the exchanged/regrouped 1 hundred next to the 0 tens to make 10 tens. Still in the 10 s column, regroup 1 ten into 10 ones from the 10 s column to the 1 s column.
Cross out the 10 tens and write 9 tens above, then write the exchanged/ regrouped 1 ten next to the 0 ones to make 10 ones.

Step 2

In the 1 s column, 10 subtract 8 , equals 2 ones (2).
Write 2 in the total value of the 1 s column.
In the 10s column, 9 subtract 7 , equals 2 tens (20).
Write 2 in the total value of the 10 s column.
In the $\mathbf{1 0 0}$ s column, 5 subtract 6 , you can't do as 5 is a lower value than 6 .
Exchange/Regroup 1 thousand into 10 hundreds from the 1,000s column to the 100s column.
Cross out the 3 thousands and write 2 thousands above, then write the
exchanged/regrouped 1 thousand next to the 5 hundreds to make 15 tens.
In the 100s column, 15 subtract 6 , equals 9 hundreds (900).
Write 9 in the total value of the 100 s column.

Step 3

In the $\mathbf{1 , 0 0 0}$ s column, 2 subtract 7 , you cannot do as 2 is a lower value than 7.
Exchange/Regroup 1 ten thousand into 10 thousands from the $10,000 \mathrm{~s}$ column to the $1,000 \mathrm{~s}$ column.
Cross out the 5 ten thousands and write 4 ten thousands above, then write the exchanged/regrouped 1 ten thousand next to the 2 thousands to make 12 thousands.
In the 1,000 s column, 12 subtract 7 , equals 5 thousands $(5,000)$.
Write 5 in the total value of the 1,000 s column.
In the 10,000 s column, 4 subtract 3 , equals 1 ten thousand $(10,000)$.
Write 1 in the total value of the $\mathbf{1 0 , 0 0 0}$ s column. Total value is $\mathbf{1 5 . 9 2 2}$.

Test Questions

1) 53600

- 37678

2) 66700
3) 23500

- $\begin{array}{r}36805 \\ \hline\end{array}$

| 2 | 1 | 0 | 0 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |

830
4
$-\quad 4$
-

5) 36342
6) $\begin{array}{lllll}4 & 5 & 6 & 7 & 9\end{array}$

- 27838
$\begin{array}{r}277 \quad 3 \\ \hline\end{array}$

8) $9 \quad 8 \quad 3 \quad 0 \quad 7$
$\begin{array}{r}27690 \\ \hline\end{array}$
9) $9 \quad 0 \quad 1 \quad 0 \quad 4$

- $\begin{array}{r}5 \\ \hline\end{array}$

Column Subtraction with Decimals

1) $79.569-34.624=?$

Step 1

Step 2
8

| 7 | 9 | . | 5 | 6 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | . | 6 | 2 | 4 |
| | | | | 4 | 5 |

Step 3

	8				
7	$\mathbf{9}$	\cdot	15	$\mathbf{6}$	$\mathbf{9}$
-3	4	.	6	2	4
4	4	\cdot	9	4	5

Strategy Applied

Step 1
In the $\mathbf{1 , 0 0 0}$ ths column, 9 subtract 4 , equals 5 thousandths (0.005).
Write 5 in the total value of the 1,000 ths column.
In the $\mathbf{1 0 0}$ ths column, $\mathbf{6}$ subtract 2 , equals 4 hundredths (0.04).
Write 4 in the total value of the 100 ths column.

Step 2

In the 10 ths column, 5 subtract 6 , you can't do as 5 is a lower value than 6 . Exchange/Regroup 1 one into 10 tenths from the 1s column to the 10ths column.
Cross out the 9 ones and write 8 ones above, then write the exchanged/ regrouped 1 one next to the 5 tenths to make 15 tenths.
In the 10ths column, 15 subtract 6, equals 9 tenths (0.9).
Write 9 in the total value of the 10 ths column.

Step 3

In the 1 s column, 8 subtract 4 , equals 4 ones (4).
Write 4 in the total value of the 1 s column.
In the 10s column, 7 subtract 3 , equals 4 tens (40).
Write 4 in the total value of the 10 s column.
Total value is 44.945 .

Part Whole Model

Bar Model

Test Questions

1) 79
$\begin{array}{lll}5 & 6\end{array}$
9
2) $45 \cdot 755$
3) $69 \cdot 37$
-34 . 624

- $26 \quad . \quad 8 \quad 6 \quad 6$
$-4 \quad 5 \quad 42$

4) $9 \quad 5 \quad . \quad 7 \quad 5 \quad 6$
5) 67.977
6) $56 \quad 8 \quad 9$
$-\begin{array}{r}4 \\ \hline\end{array}$

- $48 \quad . \quad 3 \quad 5 \quad 5$
- $3 \quad$. 44

7) $8 \quad 4 \quad 0 \quad 7 \quad 5$
8) $7 \quad 3 \quad 0 \quad 0 \quad 0$
9) $7 \quad 5 \quad 0 \quad 8$
-56.965

- $44 \quad 8 \quad 9 \quad 9$
- 65 . 35

10) $80 \quad 4 \quad 90$
11) 60 . 644
12) 90 . 5
$-\begin{array}{r}5 \\ \hline\end{array}$

- $\begin{array}{r}48 \quad . \\ \hline\end{array}$
- 63.55

Find the Missing Number

1) $3,200 \mathrm{~m}-1.65 \mathrm{~km}=?$

Word Problem

Desmond drove one point six five fewer business kilometres this week than last week's three thousand, two hundred business kilometres.
How many kms did she drive this week?

Strategy Applied

Step 1

First, the units of measure are $\mathrm{m}=$ metres and $\mathrm{km}=$ kilometres
As the units of measure are not the same, convert both numbers into either metres or kilometres.
1,000 metres $=1$ kilometre.\quad or $\quad 1$ kilometre $=1,000$ metres.

Step 2

Then, convert $3,200 \mathrm{~m}$ into kilometres by performing the following calculation $3,200 \div 1,000=3.2 \mathrm{~km}$

OR

Next, convert 1.65 km into metres by performing the following calculation $1.65 \mathrm{~km} \times 1,000=1,650 \mathrm{~m}$

Step 3

Then, choose to perform one of the following two calculations to find the missing number as follows.
$3,200 \mathrm{~m}-1650 \mathrm{~m}=?$
$3.2 \mathrm{~km}-1.65 \mathrm{~km}=?$

211
$\begin{array}{llll}3 & Z^{1} & 0\end{array}$
$2 \quad 11$

-1	6	5	0
1,	5	5	0

3 . z^{10}

$-$| 1 | . | 6 | |
| :--- | :--- | :--- | :--- |
| 1 | . | 5 | $k m$ |

Test Questions

1) $3,200 \mathrm{~m}-1.65 \mathrm{~km}=$
2) $£, 72-£ 14.38=$
3) $_$- $475=9,760$
4) \qquad - $4,632=9,511$
5) $357=457$ - \qquad
6) $100-\ldots=30$
7) __ $=4,650-1,000$
8) $200,900-1,000-1,000=$ \qquad
9) $301,301-1,000-1,000=$ \qquad
10) Subtract three thousand, six hundred and one from four thousand and eighty five $=$ \qquad
11) Subtract one hundred and five from three hundred and forty two $=$ \qquad
12) $402,900-2,000-2,000=$ \qquad
13) $501,900-3,000-3,000=$ \qquad
14) $720,800-4,000-4,000=$ \qquad

Multiples of 10

1) $40 \times 5=?$

Word Problem

Pieces of wood are cut into forty centimetre lengths.
What is the total length of 5 pieces of wood?

Strategy Applied

The forty represents the value of each group, the multiplicand.
The five represents how many groups of forty's there are, the multiplier.
The ? represents the total value of five groups of forty, the product.

Method 1

Forty represents the value of four multiples of ten, 4×10, the multiplicand.
First, multiply the value of four by the multiplier five, equal to twenty.
Then, multiply the value of ten by twenty, equal to two hundred.
$\frac{\text { Step 1 }}{4 \times 5=\underline{20} \quad \frac{\text { Step 2 }}{10 \times 20}=\underline{200}}$

Method 2
Step Count five lots of forty, adding on one at a time, expressing each of the number values as they are counted on.
First, find and touch the number forty on a number grid and then count on another forty four more times, $80,120,160,200$.

Step Counting

$$
40 \rightarrow 80 \rightarrow 120 \rightarrow 160 \rightarrow 200
$$

Bar Model

40	40	40	40	40
?200				

Number Grid

0	10	20	30	40	50	60	70	80	90	100
110	120	130	140	150	160	170	180	190	200	210

Test Questions

1) $40 \times 5=$ \qquad
2) $40 \times 7=$ \qquad
3) $50 \times 8=$ \qquad
4) $60 \times 8=$ \qquad
5) $70 \times 8=$ \qquad
6) $6 \times 120=$ \qquad
7) $3 \times 110=$ \qquad
8) $3 \times 120=$ \qquad
9) $4 \times 110=$ \qquad
10) $4 \times 120=$ \qquad
11)__ $=210 \times 2$
12)__ $=240 \times 3$
13)__ $=320 \times 4$
14)__ $=410 \times 5$

Multiples of 10

1) $60 \times 40=?$

Word Problem

A fleet of sixty brand new train carriages, can seat forty persons each. How many persons in total can the whole fleet seat?

Strategy Applied

The sixty represents the value of each group, the multiplicand.
The forty represents how many groups of sixty's there are, the multiplier.
The ? represents the total value of forty groups of sixty, the product.
Step 1
Step 2
Step 3
$60=6 \times 10$
$6 \times 4=24$
$24 \times 100=\underline{2,400}$
$40=4 \times 10 \quad 10 \times 10=100$

Step 1

Sixty represents the value of six multiples of ten, 6×10, the multiplicand.
Forty represents the value of four multiples of ten, 4×10, the multiplier.
Step 2
First, multiply the value of six by four (multiplier), equal to twenty four.
Then, multiply the value of ten by ten (multiplier), equal to one hundred.

Step 3
Next, multiply the products of twenty four and one hundred, equal to two thousand, four hundred.

Test Questions

1) $60 \times 40=$
2) $60 \times 90=$ \qquad
3) $50 \times 80=$ \qquad
4) $50 \times 70=$ \qquad
5) $50 \times 60=$ \qquad
6) $40 \times 80=$ \qquad
7) $30 \times 70=$ \qquad
8) $70 \times 80=$ \qquad
9) $70 \times 70=$ \qquad
10) $90 \times 90=$ \qquad
11) $=110 \times 10$
12) \qquad $=120 \times 20$
13) $=210 \times 30$
14) \qquad $=220 \times 40$

x10, x100 and x1,000

Multiply the value below first by $\mathbf{x 1 0}$, then by $\mathbf{x 1 0 0}$, next by $\mathbf{x 1 , 0 0 0}$ and write down the answers consecutively.

1) $2.13=$ \qquad

Place Value Grid

$1,000 \mathrm{~s}$	$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 s}$		10ths	100ths
			2	\cdot	1	3
		2	1	\cdot	3	
	2	1	3	\cdot		
	Value					
x10						
2	1	3	0	\cdot		
	x100					
$\times 1000$						

Strategy Applied

Method 1
Multiply any value by ten, means that value will become ten times as big.
Each digit in the value will move one column place value to the left, starting with the greatest place value, the 1 s .

Method 2

Multiply any value by one hundred, means that value will become one hundred times as big.
Each digit in the value will move two column place values to the left. starting with the greatest place value, the 1 s .

Method 3

Multiply any value by one thousand, means that value will become one thousand times as big.
Each digit in the value will move three column place values to the left. starting with the greatest place value, the 1 s .

Finally 2.13 multiplied by $\mathbf{x 1 0}, \mathbf{x} 100, \mathbf{x} 1,000=21.3,213,2,130$.
When the place value is blank, write zero, a place holder.

Multiply each value below first by $\mathbf{x 1 0}$, then by $\mathbf{x 1 0 0}$, next by $\mathbf{x} \mathbf{1 , 0 0 0}$ and write down the answers consecutively.

Test Questions

1) 2.13
2) 25.7
3) 632.4
4) 7.54
5) 62.9
6) 471.9
7) 4.47
8) 61.5
9) 810.2
10) 3.605
11) 54.36
12) 671.8
13) 5.574
14) 72.03
15) 613.9

Indices

1) $3^{2}+2^{3}=?$

Strategy Applied

3^{2} represents three squared, it's expanded form is three times three, 3×3
2^{3} represents two cubed, it's expanded form is two times two times two, $2 \times 2 \times 2$

Step 1

3	3	3
9		
9		

Step 2

Step 3

9	8	
17		
17		

Step 1

Use known facts of times tables or step counting to calculate three squared.
Calculate 3^{2} or 3×3 or 3 lots of 3 , equals the product of nine.

Step 2
Use known facts of times tables or step counting to calculate two cubed.
Calculate 2^{3} or $2 \times 2 \times 2$ or 2 lots of 2 doubled, equals the product eight.

Step 3

Add the products of nine and eight, equal to seventeen.

Test Questions

1) $3^{2}+2^{3}=$
2) $4^{2}+2^{3}=$ \qquad
3) $2^{2}+3^{2}$
4) $3^{2}+4^{2}$
5) $3^{2}+3^{3}=$ \qquad
6) $4^{2}+4^{3}=$ \qquad
7) $5^{2}+6^{2}$
8) $5^{2}+7^{2}$
9) $8^{2}+5^{3}=$ \qquad
10) $9^{2}+5^{3}=$
11) $2^{3}+10^{3}$
12) $2^{3}+5^{3}$
13) $11^{2}+2^{3}=$ \qquad
14) $10^{2}+2^{3}=$ \qquad

Short Multiplication

1) $\begin{array}{lllllllll} & 7 & 3 & 8 & 4 & 6 & x & 2\end{array}$?

Step 1

Strategy Applied

Step 1
In the 1 s column, multiply 6 by 2 , equals 12 ones $(10+2)$.
Write 2 in the total value of the 1 s column.
Exchange/Regroup the 10 ones into 1 ten from the 1s column to the
10s column and write 1 below the total value line of the $\mathbf{1 0}$ s column.
In the 10 s column, multiply (40) 4 by 2 , equals 8 tens (80).
Add the exchanged/regrouped 1 ten (10) below, equals 9 tens (90).
Write 9 in the total value of the 10 s column.

Step 2

In the 100s column, multiply (800) 8 by 2 , equals 16 hundreds $(1,000+600)$.
Write 6 in the total value of the 100 s column.
Regroup the 10 hundreds into 1 thousand from the 100s column to the $1,000 \mathrm{~s}$ column and write 1 below the total value line of the $1,000 \mathrm{~s}$ column. In the 1,000 s column, multiply $(3,000) 3$ by 2 , equals 6 thousands $(6,000)$. Add the exchanged/regrouped 1 thousand $(1,000)$ below, equals
7 thousands $(7,000)$.
Write 7 in the total value of the $\mathbf{1 , 0 0 0}$ s column.

Step 3
In the $\mathbf{1 0 , 0 0 0}$ s column, multiply $(70,000) 7$ by 2 , equals 14 ten thousands $(10,000+4,000)$.
Write 4 in the total value of the $\mathbf{1 0 , 0 0 0}$ s column.
Exchange/Regroup the 10 ten thousands into 1 hundred thousand from the $\mathbf{1 0 , 0 0 0}$ s column to the $\mathbf{1 0 0 , 0 0 0}$ s column and write 1 below the total value line of the $\mathbf{1 0 0 , 0 0 0}$ s column.
In the $\mathbf{1 0 0}, \mathbf{0 0 0}$ s column, multiply $(100,000) 1$ by 2 , equals 2 hundred thousands $(200,000)$.
Add the exchanged/regrouped 1 hundred thousand $(1,000)$ below, equals 3 hundred thousands $(300,000)$.
Write 3 in the total value of the $\mathbf{1 0 0 , 0 0 0}$ s column.
Total value is 347,692 .

Test Questions

1) $13 \quad 3 \quad 146$

2) $430 \quad 0 \quad 2 \quad 5$
$\mathrm{x} \quad 5$
\qquad
3) $5 \quad 2 \quad 0 \quad 8 \quad 6 \quad 9$
6
4) $6 \quad 1 \quad 3 \quad 9 \quad 1 \quad 2$

5) $7 \quad 2 \quad 4 \quad 5 \quad 7 \quad 1$
$\mathrm{x} \quad 8$
6) 82160
7

Short Multiplication with Decimals

1) $13 \cdot 046 \times 5=$?

Word Problem

Each paddling pool can hold thirteen point two four six litres of water. How many litres of water held in five pools?

Step 1

Step 2

Step 3

Strategy Applied

Step 1
In the 1,000ths column, multiply 6 by 5 , equals 30 thousandths
($0.03+0.000$).
Write 0 in the total value of the $\mathbf{1 , 0 0 0}$ ths column.
Exchange/Regroup the 30 thousandths into 3 hundredths from the 1000ths column to the 100 ths column and write 3 below the total value line of the 100ths column.

Step 2
In the 100 ths column, multiply 4 by 5 , equals 20 hundredths $(0.2+0.00)$. Add the exchanged/regrouped 3 hundredths below, is equal to 23 hundredths $(0.2+0.03)$.
Write 3 in the total value of the 100ths column.
Exchange/Regroup the 20 hundredths into 2 tenths from the 100ths column to the 10 ths column and write 2 below the total value line of the 10 ths column. In the 10 ths column, multiply 0 by 5 , equals 0 tenths (0.0). Add the exchanged/regrouped 2 tenths below, equals 2 tenths (0.2). Write 2 in the total value of the 10 ths column.

Step 3

In the $1 \mathbf{s}$ column, multiply 3 by 5 , equals 15 ones $(10+5)$.
Write 5 in the total value of the 1 s column.
Exchange/Regroup the 10 ones into 1 ten from the 1s column to the 10s column and write 1 below the total value line of the $\mathbf{1 0 s}$ column.
In the 10 s column, multiply 1 by 5 , equals 5 tens (50).
Add the exchanged/regrouped 1 ten below, equals 6 tens (60).
Write 6 in the total value of the 10 s column.
Total value is 65.230 .

Part Whole Model

Bar Model

13.046	13.046	13.046
? 65.230		

Test Questions

1) 13 . 246
\qquad
2) 32.432
3) 4.32
x \qquad x \qquad
\qquad
\qquad
4) 72 . 249
x \qquad
5) 53 .
45
8
6) 5 . 52
x \qquad x \qquad
7) $93 \cdot 356$
x \qquad
8) 24
4
52
5
x \qquad
9) $8 \quad 6$
23

Page 44

Long Multiplication

1) $137 \times 24=?$

Step 1-3
Step 4-7
Step 8

\mathbf{x}| 1 | 3 | 7 |
| ---: | ---: | ---: |
| 2 | 4 | | | 42 |
| :--- |

$+$| 2 | 7_{1} | 4 | 0 |
| :--- | :--- | :--- | :--- |
| 3, | 2 | 8 | 8 |
| 1 | | | |

Strategy Applied

Step 1 (First line of working out)
In the 1 s column, 7×4, equals 28 ones $(20+8)$.
Write 8 underneath the 4 in the 1 s column.
Regroup the 20 ones into 2 tens and write it as a small 2 below the 2 in the $\mathbf{1 0 s}$ column.
Step 2
In the 10 s column, (30) 3×4, equals 12 tens $(100+20)$.
Add the regrouped 2 tens to the 12 tens, equals 14 tens $(100+40)$.
Write 4 next to the small 2 in the 10 s column.
Regroup the 10 tens into 1 hundred and write a small 1 below the 1 in the 100s column.
Step 3
In the 100 s column, (100) 1×4, equals 4 hundreds (400).
Add the regrouped 1 hundred to the 4 hundreds, equals 5 hundreds (500).

Write 5 next to the small 1 in the $\mathbf{1 0 0}$ s column.

Step 4 (Second line of working out)
In the 1 s column, write 0 below the 8 , a place holder, to represent the tens place value of the 2 tens in the number 24, the multiplier. (Discuss)

Step 5
In the 1 s column, $7 \times 2(20)$, equals 14 tens $(100+40)$.
Write 4 below the 4 in the 10 s column.
Regroup the 10 tens into 1 hundred.
Write a small 1 below the 5 in the $\mathbf{1 0 0}$ s column.
Step 6
In the 10 s column, (30) 3×2 (20), equals 6 hundreds (600).
Add the regrouped 1 hundred to the 6 hundreds, equals 7 hundreds (700).

Write 7 below the 5 in the $\mathbf{1 0 0}$ s column.
Step 7
In the 100 s column, (100) 1×2 (20), equals 2 thousands $(2,000)$.
Write 2 in the $\mathbf{1 , 0 0 0}$ s column.

Step 8 (Third line of working out)
Use column addition to add together the two lines of working out, do not include the small regrouped values.
Total value is 3,288 .

Test Questions

1) 83
x 24
$+$
\qquad
2) $9 \quad 4$
$\times \quad 26$
\qquad
$+$
\qquad
3) $1 \begin{array}{lll}1 & 3\end{array}$
x 24
$+$ \qquad
$\begin{array}{r}3) \\ \mathrm{x} \\ \hline\end{array}$
$+$ \qquad

$6)$
x
x
:---

\qquad
\qquad

Find the Missing Number

1) $£ 2.75 \mathrm{x}$? $=£ 35.00-£ 7.50$

Word Problem

A packet of peanuts cost two pounds seventy five each.
A family size bag of cashew nuts is on sale, seven pounds fifty cheaper than the usual price of thirty five pounds.
How many packets of peanuts cost the same as the bag of cashew nuts?

Strategy Applied

Step 1
Calculate the known number sentence $£ 35.00-£ 7.50$, using column subtraction.

2	14			
3	5	.	10	0
	7	.	5	0
2	7	.	5	0

Step 2
New known fact $£ 2.75 \quad \mathbf{x}$? $=£_{2} 27.50$
Use step counting to count on in lots of $£ 2.75$ up to $£ 27.50$ How many lots of $£ 2.75$ are counted on is the missing number, 10 .

Step Counting

2.75
5.50
8.25
11.00
13.7516 .50
$19.25 \quad 22.00 \quad 25.75 \quad 27.50$

Number Line

Test Questions

1) $£ 2.75 \mathrm{x} \ldots=£ 35.00-£ 7.50$
2) $£ 4.75 \mathrm{x} \ldots=£ 65.00-£ 17.50$
3) $60 \times 40=\ldots \times 30$
4) $617 \times 9=\ldots+1,860$
5) $4 \times 4 \times 4=$ \qquad
6) $6 \times 8=\ldots \times 4$
7) $8 \mathrm{x} \ldots=96$
8) $6 \times 7 \times 4=$ \qquad
9) $506 \times 7=\ldots+1,753$
10) $18 \times 0 \times 8=$ \qquad
11) $7 \mathrm{x} \ldots=63$
12) $3 \times 7 \times 8=$ \qquad
13) $2,106 \times 3=\ldots+2,453$
14) $15 \times 0 \times 6=$

Multiples of 10

1) $330 \div 3=?$

Word Problem

A stack of multilink cubes reach a height of 330 cm .
Each multilink cube is 3 cm tall.
How many multilink cubes are in the stack?

Strategy Applied

Three hundred and thirty represents the total value, the dividend.
Three represents how many groups the three hundred and thirty is equally divided into, the divisor.
? represents the value of each group, the quotient.

Step 1
$330=33 \mathrm{x} 10$

Step 3
$10 \mathrm{x} 11=110$

Step 1

First, three hundred and thirty represents the value of thirty three multiples of ten, 33×10, the dividend.

Step 2
Then, divide the value of thirty three by three (divisor), equal to eleven.

Step 3

Next, multiply the value of ten by eleven, equal to one hundred and ten. Finally, three hundred and thirty divided by three is equal to one hundred and ten.

Bar Model

330		
110	110	110

Test Questions

1) $330 \div 3=$ \qquad
2) $360 \div 4=$ \qquad
3) $350 \div 5=$ \qquad
4) $360 \div 6=$ \qquad
5) $420 \div 7=$ \qquad
6) $320 \div 8=$ \qquad
7) $360 \div 9=$ \qquad
8) $240 \div 3=$ \qquad
9) $240 \div 4=$ \qquad
10) $250 \div 5=$ \qquad
11) $630 \div 9=$ \qquad
12) $270 \div 3=$ \qquad
13) $480 \div 4=$ \qquad
14) $600 \div 5=$ \qquad

Multiples of 10

1) $4,200 \div 70=?$

Strategy Applied

How many seventy seater aeroplanes are needed to carry four thousand, two hundred holiday makers?

Strategy Applied

Four thousand, two hundred represents the total value, the dividend.
Seventy represents how many groups the three hundred and thirty is equally divided into, the divisor.
? represents the value of each group, the quotient.

Step 1
$4200=42 \mathbf{x} 100$ $70=7 \mathrm{x} 10$

Step 2
$42 \div 7=6$
$100 \div 10=10$

Step 3
$6 \mathrm{x} 10=60$

Step 1
Four thousand, two hundred represents the values of forty two multiples of one hundred, 42×100, the dividend.
Seventy represents the value of seven multiples of ten, 7×10, the divisor.

Step 2
First, divide the value of forty two by seven, equal to six.
Then, divide the value of one hundred by ten, equal to ten.

Step 3
Next, multiply six by ten, equal to sixty.
Finally, four thousand, two hundred divided by seventy is equal to sixty.

Test Questions

1) $4,200 \div 70=$
2) $4,800 \div 80=$ \qquad
3) $3,500 \div 50=$ \qquad
4) $5,500 \div 50=$ \qquad
5) $4,500 \div 30=$ \qquad
6) $4,800 \div 40=$ \qquad
7) $1,500 \div 50=$ \qquad
8) $4,200 \div 60=$ \qquad
9) $7,200 \div 90=$ \qquad
10) $4,000 \div 80=$ \qquad
11) $5,500 \div 50=$ \qquad
12) $5,400 \div 60=$ \qquad
13) $8,100 \div 90=$ \qquad
14) $9,600 \div 80=$ \qquad

$$
\div 10, \div 100 \text { and } \div 1,000
$$

Divide the value below first by $\div 10$, then by $\div 100$, next by $\div 1,000$ and write down all three answers consecutively.

1) $213=$ \qquad

Place Value Grid

100 s	$\underline{10 \mathrm{~s}}$	1 s		$\underline{10 t h \mathrm{ts}}$	$\underline{100 \text { ths }}$	1,000ths
2	1	3	\cdot			
	2	1	\cdot	3		
		2	\cdot	1	3	
		0	\cdot	2	1	3
	$\div 100$					
		000				

Strategy Applied

Method 1
Divide any value by ten, means that value will become ten times as small.
Each digit in the value will move one column place value to the right, starting with the greatest place value, the 100s.

Method 2

Divide any value by one hundred, means that number will become one hundred times as small.
Each digit in the number will move two column place values to the right, starting with the greatest place value, the 100s.

Method 3

Divide any number by one thousand, means that number will become one thousand times as small as.
Each digit in the number will move three column place values to the right, starting with the greatest place value, the 100s.

Finally $\mathbf{2 1 3}$ multiplied by $\div 10, \div \mathbf{1 0 0}$ and $\div 1,000=2.13,2.13,0.213$.
When the place value is blank, write zero, a place holder.

Divide the values below first by $\div 10$, then by $\div 100$, next by $\div 1,000$ and write down all three answers consecutively.

Test Questions

1) 213
2) 257
3) 6,324
4) 75
5) 62
6) 4719
7) 4
8) 6
9) 8,102
10) 605
11) 54,306
12) 6,718
13) 55,074
14) 7,203
15) 60,139

Short Division

1) $28,253 \div 9=?$

Step 1
0
$9 \begin{array}{llll} & \\ z^{2} 8^{12} & 5 & 3\end{array}$

Step 2
$0 \quad 3$

| 0 | 3 | | |
| :--- | :--- | :--- | :--- | :--- |
| | 28^{12} | 5 | 3 |

Step 4

0	3	1	3		
9	z^{2}	28	12	3	3

Step 5

| 0 | 3 | 1 | 3 | 9 | $r 2$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 28 | 12 | 35 | 83 | |

Strategy Applied

Step 1
How many lots of 9 divide exactly in to 2 ? The answer is 0 ($9 \times 0=0$), with a remainder of 2 .
Write 0 on the line above the 2 .
Cross out the 2 and regroup the remainder 2 to the next digit place value, 8 .

Step 2

How many lots of 9 divide exactly in to 28 ? The answer is 3 ($9 \times 3=27$), with a remainder of 1 .
Write 3 on the line above the 28.
Regroup the remainder 1 to the next digit place value, 2 , to become 12 .

Step 3

How many lots of 9 divide exactly in to 12 ? The answer is $1(9 \times 1=9)$, with a remainder of 3 .
Write 1 on the line above the 12 .
Regroup the remainder 3 to the next digit place value, 5 , to become 35 .

Step 4
How many lots of 9 divide exactly in to 35 ? The answer is $3(9 \times 3=27)$, with a remainder of 8 .
Write 3 on the line above the 35 .

Step 5

How many lots of 9 divide exactly in to 83 ? The answer is $9(9 \times 9=81)$, with a remainder of 2 .
Write 9 on the line above the 83 .
The remainder of 2 , is written as $\mathbf{r} 2$ on the line above.
Total value is $3,139 \mathrm{r} 2$.

Test Questions

1) $28,253 \div 9=$
2) $15,643 \div 9=$ \qquad
3) $35,840 \div 8=$ \qquad
4) $12,688 \div 8=$
5) $24,571 \div 7=$ \qquad
6) $15,789 \div 7=$ \qquad
7) $24,854 \div 6=$ \qquad
8) $35,058 \div 6=$ \qquad
9) $35,008 \div 4=$ \qquad
10) $79,036 \div 4=$ \qquad

Short Division with Decimals

1) $1.060 \div 4=?$

Step 1

Step 3
$4 \longdiv { 4 } \begin{array} { c } { 0 } \\ { 4 } \end{array}$

Step 2

Step 4
$\begin{array}{rrrrr}0 & \cdot & 2 & 6 & 5 \\ 4 & { }^{4} \cdot{ }^{1} 0{ }^{2} 6{ }^{2} 0\end{array}$

Strategy Applied

Step 1
How many lots of 4 divide exactly in to 1 ? The answer is $0(2 \times 0=0)$, with a remainder of 1 .
Write 0 on the line above the 1 and write a decimal point next to it.
Cross out the 1 and regroup the remainder 1 to the next digit place value, 0 , to become 10 .

Step 2

How many lots of 4 divide exactly in to 10 ? The answer is $2(4 \times 2=8)$, with a remainder of 2 .
Write 2 on the line above the 10 .
Regroup the remainder 2 to the next digit place value, 6 , to become 26 .

Step 3

How many lots of 4 divide exactly in to 26 ? The answer is $6(4 \times 6=24)$, with a remainder of 2 .
Write 6 on the line above the 26 .
Regroup the remainder 2 to the next digit place value, by writing a place holder, zero, to become 20.

Step 4
How many lots of 4 divide exactly in to 20 ? The answer is $5(4 \times 5=20)$, Write 5 on the line above the 20 .

Step 5

There are no more digits in the number to be divided by 4 .
Total value is 0.265 .

Test Questions

1) $1.06 \div 4=$ \qquad
2) $5.54 \div 4=$ \qquad
3) $3.66 \div 6=$ \qquad
4) $7.38 \div 6=$ \qquad
5) $9.18 \div 3=$ \qquad
6) $2.895 \div 3=$ \qquad
7) $1.057 \div 7=$ \qquad
8) $5.77 \div 7=$ \qquad
9) $4.32 \div 8=$ \qquad
10) $7.456 \div 8=$ \qquad

Find the Missing Number

1) $3,500 \div 50+150=?$

Word Problem

Fifty libraries share a donation of three thousand, five hundred dictionaries from a charity. Another charity gives one of the libraries an extra one hundred and fifty dictionaries.
How many dictionaries did that library receive altogether?

Strategy Applied

There are two operations in the number sentence, divide and add.
First, calculate $3,500 \div 50$ and then add 150

Step 1
$50 \begin{array}{ccc}0 \quad 0 \quad 7 \quad 0 \\ 335350 & 0\end{array}$

Step 2

$$
\begin{array}{r}
150 \\
+\quad 70 \\
\hline 2200 \\
\hline 1
\end{array}
$$

Step 1
Then, use a mental strategy or short division to calculate

$$
3,500 \div 50 \text {, which is equal to } 70
$$

Step 2
Next, use a mental strategy or column addition to calculate

$$
70+150 \text {, which is equal to } 220
$$

Test Questions

1) $3,500 \div 50+150=$
2) $100-60 \div 4+9=$ \qquad
3) $3,200 \div 8+120=$ \qquad
4) $3,200 \div 40+400=$ \qquad
5) $3,600 \div 9+40=$ \qquad
6) $3,600 \div 4+90=$ \qquad
7) $40-36 \div 3+5=$
8) $180-78 \div 2+4=$ \qquad
9) $12+7 \times 4 \div 4=$ \qquad
10) $100-26 \div 2+8=$ \qquad
11) $320 \div 8+15=$ \qquad
12) $4,800 \div 40+25=$ \qquad
13) $360 \div 9+35=$ \qquad
14) $360 \div 6+45=$

To Nearest 10,000

1) $5,469,109=$?

Strategy Applied

When rounding to the nearest $\mathbf{1 0 , 0 0 0}$ s place value, the following will occur. 1. The $\mathbf{1 0 , 0 0 0}$ s digit value will remain the same (round down), if the digit in the 1,000 s column is a $0,1,2,3,4$ (4 or less).
2. The $\mathbf{1 0 , 0 0 0}$ s digit value will increase by one ten thousand (round up), if the digit in the $\mathbf{1 , 0 0 0}$ s column is a $5,6,7,8,9$ (5 or more).
3. The value of any digits in the column place values to the right of the 10,000 s column change to a place holder, 0.
4. The value of any digits in the column place values to the left of the $10,000 \mathrm{~s}$ column usually remain the same. (If the $\mathbf{1 0 , 0 0 0}$ digit value increases to 100,000 then the $\mathbf{1 0 , 0 0 0}$ s digit becomes a place holder, $\mathbf{0}$ and the $\mathbf{1 0 0}, \mathbf{0 0 0}$ s digit increases by 100,000 more)

Place Value Grid

$1,000,000 \mathrm{~s}$	$\underline{100,000 \mathrm{~s}}$	$\underline{10,000 \mathrm{~s}}$	$\underline{1,000 \mathrm{~s}}$	$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 \mathrm{~s}}$
5,	4	6	9,	1	0	9
5,	4	7	0,	0	0	0

Step 1
First, write the number $5,469,109$ on a Place Value Grid in the correct column place values of the $1,000,000 \mathrm{~s}, 100,000 \mathrm{~s}, 10,000 \mathrm{~s}, 1,000 \mathrm{~s}, 100 \mathrm{~s}$, 10s and 1s.

Step 2
Then, say the digit in the 1,000 s column which is 9 and as it is 5 or more the $\mathbf{1 0 , 0 0 0}$ s digit value will increase by one ten thousand (round up).

Step 3

Next, the digit value of the 6 ten thousands $(60,000)$, add $\mathbf{1 0 , 0 0 0}$ to make 7 ten thousands $(70,000)$.
In the $\mathbf{1 0 , 0 0 0}$ s column write the digit 7 underneath the digit 6 .

Step 4

Then, the $\mathbf{1 , 0 0 0} \mathbf{s}, \mathbf{1 0 0} \mathbf{s}, 10 \mathrm{~s}$ and 1 s column digit values change to a place holder, 0 .
In the $\mathbf{1 , 0 0 0}, 100 \mathrm{~s}, 10 \mathrm{~s}$ and $\mathbf{1 s}$ columns write the digit 0 underneath the digits $9,1,0$ and 9 .

Step 5

Next, the $\mathbf{1 , 0 0 0 , 0 0 0}$ s and $\mathbf{1 0 0 , 0 0 0}$ s column digit values remains the same as 5 and 4.
In the $\mathbf{1 , 0 0 0 , 0 0 0}$ s and $\mathbf{1 0 0 , 0 0 0}$ s columns write the same digits 5 and 4 underneath.

Step 6

Finally, 5,469,109 rounded to the nearest $\mathbf{1 0 , 0 0 0}$ is $5,470,000$.

Test Questions

1) $5,469,109=$ \qquad 8) $2,010,207=$
2) $9,270,864=$ \qquad
3) $3,870,671=$ \qquad
4) $9,878,135=$ \qquad 10) $6,561,112=$
5) $5,888,063=$ \qquad 11) $6,320,849=$
6) $2,173,639=$ \qquad 12) $8,721,920=$
7) $1,081,482=$ \qquad 13) $9,087,451=$
8) $1,043,068=$ \qquad 14) $2,936,204=$

To Nearest 100,000

1) $5,469,109=$?

Strategy Applied

When rounding to the nearest $\mathbf{1 0 0 , 0 0 0}$ s place value, the following will occur.

1. The 100,000 s digit value will remain the same (round down), if the digit in the $\mathbf{1 0 , 0 0 0}$ s column is a $0,1,2,3,4$ (4 or less).
2. The $\mathbf{1 0 0 , 0 0 0}$ s digit value will increase by one hundred thousand (round up), if the digit in the $\mathbf{1 0 , 0 0 0}$ s column is a $5,6,7,8,9$ (5 or more).
3. The value of any digits in the column place values to the right of the $100,000 \mathrm{~s}$ column change to a place holder, $\mathbf{0}$.
4. The value of any digits in the column place values to the left of the $100,000 \mathrm{~s}$ column usually remain the same. (If the $\mathbf{1 0 0}, \mathbf{0 0 0}$ s digit value increases to $1,000,000$ then the $\mathbf{1 0 0 , 0 0 0}$ s digit becomes a place holder, 0 and the $\mathbf{1 , 0 0 0 , 0 0 0}$ s digit increases by $1,000,000$ more)

Place Value Grid

$1,000,000 \mathrm{~s}$	$\underline{100,000 \mathrm{~s}}$	$\underline{10,000 \mathrm{~s}}$	$\underline{1,000 \mathrm{~s}}$	$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 \mathrm{~s}}$
5,	4	6	9,	1	0	9
5,	5	0	0,	0	0	0

Step 1
First, write the number $5,469,109$ on a Place Value Grid in the correct column place values of the $1,000,000 \mathrm{~s}, 100,000 \mathrm{~s}, 10,000 \mathrm{~s}, 1,000 \mathrm{~s}, 100 \mathrm{~s}$, 10s and 1s.

Step 2

Then, say the digit in the $\mathbf{1 0 , 0 0 0}$ s column which is 6 and as it is 5 or more the $\mathbf{1 0 0 , 0 0 0}$ s digit value will increase by one hundred thousand (round up).

Step 3

Next, the digit value of the 4 hundred thousand $(400,000)$, add $\mathbf{1 0 0}, \mathbf{0 0 0}$ to make 5 hundred thousand $(500,000)$.
In the $\mathbf{1 0 0 , 0 0 0}$ s column write the digit 5 underneath the digit 4 .

Step 4

Then, the $\mathbf{1 0 , 0 0 0} \mathrm{s}, \mathbf{1 , 0 0 0}, \mathbf{1 0 0} \mathrm{s}, \mathbf{1 0}$ and $\mathbf{1 s}$ column digit values change to a place holder, $\mathbf{0}$.
In the $\mathbf{1 0 , 0 0 0 s}, \mathbf{1 , 0 0 0}, \mathbf{1 0 0 s}, \mathbf{1 0 s}$ and 1 s columns write the digit 0 underneath the digits $6,9,1,0$ and 9 .

Step 5

Next, the $\mathbf{1 , 0 0 0 , 0 0 0}$ solumn digit value remains the same as 5 .
In the $\mathbf{1 , 0 0 0 , 0 0 0}$ s columns write the same digit 5 underneath.

Step 6

Finally, 5,469,109 rounded to the nearest 10,000 is $5,500,000$.

Test Questions

1) $5,469,109=$ \qquad 8) $2,010,207=$
2) $9,270,864=$ \qquad
3) $3,870,671=$ \qquad
4) $9,878,135=$ \qquad 10) $6,561,112=$
5) $5,888,063=$ \qquad 11) $6,320,849=$
6) $2,173,639=$ \qquad 12) $8,721,920=$
7) $1,081,482=$ \qquad 13) $9,087,451=$
8) $1,043,068=$ \qquad 14) $2,936,204=$

To Nearest $1,000,000$

1) $5,469,109=$?

Strategy Applied

When rounding to the nearest $\mathbf{1 , 0 0 0 , 0 0 0}$ s place value, the following will occur.

1. The $1,000,000$ s digit value will remain the same (round down), if the digit in the $\mathbf{1 0 0}, \mathbf{0 0 0}$ s column is a $0,1,2,3,4$ (4 or less).
2. The $\mathbf{1 , 0 0 0 , 0 0 0}$ s digit value will increase by one hundred thousand (round up), if the digit in the $\mathbf{1 0 0 , 0 0 0 s}$ column is a $5,6,7,8,9$ (5 or more). 3. The value of any digits in the column place values to the right of the $\mathbf{1 , 0 0 0 , 0 0 0}$ s column change to a place holder, $\mathbf{0}$.
3. The value of any digits in the column place values to the left of the $\mathbf{1 , 0 0 0 , 0 0 0}$ s column usually remain the same. (If the $\mathbf{1 , 0 0 0 , 0 0 0 s}$ digit value increases to $10,000,000$ then the $\mathbf{1 , 0 0 0 , 0 0 0}$ s digit becomes a place holder, 0 and the $\mathbf{1 0 , 0 0 0 , 0 0 0 s ~ d i g i t ~ i n c r e a s e s ~ b y ~ 1 0 , 0 0 0 , 0 0 0 ~ m o r e) ~}$

Place Value Grid

$1,000,000 \mathrm{~s}$	$\underline{100,000 \mathrm{~s}}$	$\underline{10,000 \mathrm{~s}}$	$\underline{1,000 \mathrm{~s}}$	$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 \mathrm{~s}}$
5,	4	6	9,	1	0	9
5,	0	0	0,	0	0	0

Step 1

First, write the number $5,469,109$ on a Place Value Grid in the correct column place values of the $1,000,000 \mathrm{~s}, 100,000 \mathrm{~s}, \mathbf{1 0 , 0 0 0}, 1,000 \mathrm{~s}, 100 \mathrm{~s}$, 10s and 1s.

Step 2

Then, say the digit in the $\mathbf{1 0 0 , 0 0 0}$ s column which is 4 and as it is $\mathbf{4}$ or less the $\mathbf{1 , 0 0 0}, \mathbf{0 0 0}$ s digit value will remain the same (round down).

Step 3

Next, the digit value of the 5 million $(5,000,000)$ remains the same.
In the $\mathbf{1 , 0 0 0}, \mathbf{0 0 0}$ s column write the digit 5 underneath the digit 5 .

Step 4

Then, the $\mathbf{1 0 0 , 0 0 0 s}, \mathbf{1 0 , 0 0 0} s, 1,000 \mathrm{~s}, \mathbf{1 0 0} \mathrm{~s}, \mathbf{1 0 s}$ and 1 s column digit values change to a place holder, $\mathbf{0}$.
In the $\mathbf{1 0 0 , 0 0 0 s}, \mathbf{1 0 , 0 0 0 s}, \mathbf{1 , 0 0 0 s}, \mathbf{1 0 0}$ s, $\mathbf{1 0 s}$ and $\mathbf{1 s}$ columns write the digit 0 underneath the digits $4,6,9,1,0$ and 9 .

Step 6

Finally, 5,469,109 rounded to the nearest $\mathbf{1 0 , 0 0 0}$ is $5,000,000$.

Test Questions

1) $5,469,109=$ \qquad
2) $2,010,207=$ \qquad
3) $9,270,864=$
4) $3,870,671=$
5) $6,878,135=$ \qquad 10) $6,561,112=$
6) $5,888,063=$ \qquad 11) $6,320,849=$
7) $2,173,639=$ \qquad 12) $8,721,920=$
8) $1,081,482=$ \qquad 13) $9,087,451=$
9) $1,043,068=$ \qquad
10) $2,936,204=$ \qquad

Percentage of a Quantity

1) 42% of $90=?$

Strategy Applied

$100 \%=$ Quantity of 90
$10 \%=$ Quantity $\div 10(90 \div 10)$
$1 \%=$ Quantity $\div 100(90 \div 100)$
Partition 42% into $40 \%+2 \%$

Step 1
$10 \%=90 \div 10=9$
$40 \%=10 \% \times 4=9 \times 4=36$

	$\underline{10 \mathrm{~s}}$	$\underline{1 s}$
value	9	0
		9

$$
\begin{aligned}
& \\
& \\
& \times
\end{aligned} \begin{array}{r}
9 \\
\\
\hline
\end{array} \begin{aligned}
& 4 \\
& \hline
\end{aligned}
$$

Calculate 40% of the quantity of 90 .
First, work out $\mathbf{1 0 \%}$ of the quantity of 90 , equal to 9 .
Then, 40% is equal to 10% multiplied by 4 , equal to the quantity of 36 .

Step 2

	10 s	$\underline{1 s}$		10ths
	value			
	9	0	\cdot	
		0	\cdot	9

Calculate 2% of the quantity of 90 .
Next, work out $\mathbf{1 \%}$ of the quantity of 90 , equal to $\mathbf{0 . 9}$.
Then, 2% is equal to $\mathbf{1} \%$ multiplied by 2 , equal to the quantity of 1.8 .

Step 3
$40 \%+2 \%=36+1$. $8=37$. 8

Calculate 42% of the quantity of 90 .
Next, add together the quantities of 40% and 2%, which is 36 add 1.8 .
Finally, 42% of the quantity of 90 is equal to 37.8 .

Test Questions

1) 42% of $90=$ \qquad
2) 35% of $98=$
3) 76% of $60=$ \qquad 9) 71% of $80=$
4) 75% of $66=$ \qquad 10) 33% of $20=$
5) 38% of $78=$ \qquad 11) 12% of $950=$
6) 91% of $60=$ \qquad 12) 89% of $250=$
7) 63% of $40=$ \qquad 13) 98% of $240=$
8) 55% of $46=$ \qquad
9) 34% of $460=$ \qquad

Fraction of a Quantity

1) $\frac{3}{5}$ of 2 metres $=?$

Word Problem

Emily has two metres of ribbon to decorate a present.
She only uses three-fifths of the ribbon.
How many metres of ribbon was used?

Strategy Applied

A fraction is part of a whole or part of $\mathbf{1}$ and a fifth is 1 of 5 equal groups 2 metres is the quantity divided equally between the total number of groups.
5 is the denominator, represents the total number of groups.
3 is the numerator, represents three of the total number of groups.

Step 1
$5 \longdiv { 0 \quad 4 \quad 0 } \begin{array} { c } { } \\ { z ^ { 2 } 0 } \end{array} \quad 0$

Step 2

Step 1

First, convert the quantity 2 metres into 200 cms , an equivalent unit of measure so that it can be divided more easily. (1 metre $=100 \mathrm{cms}$)
Then, use short division to calculate the value of one equal group, two hundred $\mathbf{c m s}$ divided by five (denominator), equal to forty $\mathbf{c m s}$.

Step 2

Next, use short multiplication to calculate the value of three equal groups, forty cms times three (multiplier), equal to one hundred and twenty cms.
Finally, the value of the missing number is 120 cms .

200 cm				
40 cm				

Test Questions

1) $\frac{3}{5}$ of 2 metres $=$
2) $\frac{2}{3}$ of $63 \mathrm{~km}=$
3) $\frac{3}{7}$ of $2800 \mathrm{~m}=$
4) $\frac{1}{3}$ of $£ 5.07=$
5) $\frac{3}{7}$ of $700=$
6) $\frac{5}{6}$ of $120=$
7) $\frac{3}{8}$ of $£ 120=$
8) $\frac{1}{4}$ of $308=$
9) $\frac{1}{8}$ of $£^{7.20}=$
10) $\frac{4}{7}$ of $\quad £^{14}=$

Add Fractions

1) $\frac{2}{3}+\frac{4}{5}=\frac{?}{?}$

Strategy Applied
Add fractions with different denominators, two-thirds and four-fifths.
$\begin{array}{lll}2 \text { is the numerator. } & \frac{2}{2} & 4 \text { is the numerator. }\end{array} \frac{4}{4}$

$\frac{\text { Step } 1}{\text { LCM }}=15=\mathbf{L C D} \quad$| $\frac{\text { Step } 2}{2 \times 5}=\frac{10}{\frac{\text { Step } 3}{4}}=\frac{12}{5 \times 3}=\frac{12}{15}$ |
| :--- |

$\frac{\mathrm{x} 3}{3}$
$\frac{\mathrm{x} 5}{5}$
6
9
12
15

Step 4
$\frac{10}{15}+\frac{12}{15}=\frac{22}{15}$

Step 5
$\begin{gathered}0 \quad 1 \\ 1 5 \longdiv { z ^ { 2 2 } } \frac { 7 } { 1 5 }\end{gathered}=1 \frac{7}{15}$

Bar Model

Step 1
First, both fractions need to be made equivalent.
Calculate the Lowest Common Multiple/Denominator (LCM/LCD)
of the denominators 3 and 5 , which is 15 .

Step 2

Then, for two-thirds, the denominator 3 is multiplied by 5 to make it equivalent to 15 (LCD).
The numerator 2 must also be multiplied by 5 , equal to 10 .
Step 3
Next, for four-fifths, the denominator 5 is multiplied by 3 to make it equivalent to 15 (LCD).
The numerator 4 must also be multiplied by 3 , equal to 12 .
Step 4
Then, add the numerators $10+12$, equalling 22 and the denominator remains the same as 15 , making the fraction twenty two-fifteenths.
Step 5
Next, twenty two-fifteenths is an improper fraction and needs to be converted into a mixed fraction, using short division.
22 (numerator) is divided by 15 (denominator), which is 1 remainder 7 .
The remainder 7 is written as a fraction, becoming the numerator and the denominator remains the same, 15 .
Finally, total value is one and seven-fifteenths. (Simplify if possible)

Test Questions

1) $\frac{2}{3}+\frac{4}{5}=$
2) $\frac{1}{2}+\frac{1}{12}=$
3) $\frac{3}{5}+\frac{5}{6}=-$
4) $\frac{1}{4}+\frac{5}{8}=$
5) $\frac{3}{4}+\frac{11}{12}=$
6) $\frac{2}{6}+\frac{7}{12}=-$
7) $\frac{1}{3}+\frac{5}{12}=$
8) $\frac{1}{5}+\frac{5}{15}=$
9) $\frac{1}{4}+\frac{5}{6}=$ \qquad 10) $\frac{2}{10}+\frac{7}{30}=-$

Subtract Fractions

1) $\frac{2}{4}-\frac{1}{10}=\frac{?}{?}$

Strategy Applied

Subtract fractions of different denominators, two-quarters and one-tenth.
$\begin{array}{lll}2 \text { is the numerator. } & \frac{2}{2} & 1 \text { is the numerator. } \\ 4 \text { is the denominator. } & 4 & \frac{1}{10} \text { is the denominator. }\end{array}$

$\frac{\text { Step } 1}{\text { LCM }}=20=\mathbf{L C D}$	$\frac{\text { Step } 2}{2} \times 5=\frac{10}{4}$
$\frac{\text { Step } 3}{1} \times 5=\frac{2}{20}$	$\frac{2}{10 \times 2}=\frac{20}{20}$

$\frac{\mathrm{x} 4}{4}$

8 \quad| $\mathbf{x} 10$ |
| :--- |
| 10 |
| 20 |

12
16
20

Step 4

$$
\text { Step } 5
$$

$$
\frac{10}{20}-\frac{2}{20}=\frac{8}{20} \quad \frac{8}{20} \div 4=4=\frac{2}{5}
$$

Bar Model

$$
\frac{2}{4} \text { or } \frac{10}{20} \quad-\quad \frac{1}{10} \text { or } \frac{2}{20} \quad=\quad \frac{8}{20} \text { or } \frac{2}{5}
$$

Step 1

First, both fractions need to be made equivalent.
Calculate the Lowest Common Multiple/Denominator (LCM/LCD)
of the denominators 4 and 10 , which is 20 .

Step 2

Then, for two-quarters, the denominator 4 is multiplied by 5 to make it equivalent to 20 (LCD).
The numerator 2 must also multiplied by 5 , equal to 10 .
Step 3
Next, for one-tenth, the denominator 10 is multiplied by 2 to make it equivalent to 20 (LCD).
The numerator 1 must also multiplied by 2 , equal to 2 .
Step 4
Then, subtract the numerators 10-2, equalling 8 and the denominator remains the same as 20 , making the fraction eight-twentieths.

Step 5

Next, eight-twentieths is a proper fraction that can be simplified.
Simplify the fraction, by dividing both the numerator and denominator by the same Highest Common Factor (HCF) of 4.
Then the numerator 8 is divided by 4 , equal to 2 and the denominator 20 is divided by 4 , equal to 5 .
Finally the total value is eight-twentieths or one-quarter.

Test Questions

1) $\frac{3}{4}-\frac{1}{10}=$
2) $\frac{3}{4}-\frac{3}{10}=-$
3) $\frac{2}{3}-\frac{1}{12}=-$
4) $\frac{2}{3}-\frac{1}{6}=-$
5) $\frac{2}{3}-\frac{1}{9}=-$
6) $\frac{2}{3}-\frac{2}{9}=-$
7) $\frac{3}{4}-\frac{7}{10}=$
8) $\frac{2}{5}-\frac{2}{6}=-$
9) $\frac{7}{12}-\frac{2}{6}=-$
10) $\frac{2}{3}-\frac{4}{9}=$

Multiply Fractions

1) $\frac{5}{8} \times 2=?$

Strategy Applied
5 represents the numerator. $\quad \frac{5}{8} \quad 2$ represents the integer.
8 represents the denominator. 8
$\frac{5}{8} \mathbf{x} 2$ means two lots of five-eighths. or $\frac{5}{8}+\frac{5}{8}$

Bar Model

Step 1
$\frac{5 \mathrm{x} \mathrm{2}}{8}=\frac{10}{8}$

Step 2

$$
\frac{1}{8} \frac{2}{410} 8=1 \frac{2}{8} \text { or } 1 \frac{1}{4}
$$

Step 1
First, multiply the numerator 5 by the integer 2 , to equal a new numerator of 10 .
The denominator remains the same as 8 , making ten-eighths.

Step 2
Then, ten-eighths is an improper fraction that must be converted into a mixed number.
Next, use short division, divide the numerator by the denominator.
10 (numerator) is divided by 8 (denominator), which is 1 remainder 2 . The remainder 2 is written as a fraction, becoming the numerator and the denominator remains the same as 8 .
Finally, the total value is one and two-eighths or one and one-quarter. (Simplify if possible)

Test Questions

1) $\frac{5}{8} \times 2=-$
2) $\frac{1}{6} \times 3=$ \qquad
3) $\frac{5}{7} \times 6=$ \qquad
4) $\frac{1}{5} \times 4=$
5) $\frac{3}{8} \times 3=-$
6) $\frac{1}{6} \times 5=$ \qquad
7) $\frac{1}{5} \times 6=$ \qquad
8) $\frac{3}{7} \times 8=$

Multiply Mixed Fractions

1) $4 \frac{2}{5} \times 3=?$

Strategy Applied

4 represents the whole number.
2 represents the numerator. $\quad 2 \quad 3$ represents the integer. 5 represents the denominator. 5
$4 \frac{2}{5} \times 3$ means three lots of four and two-fifths.

$$
4 \frac{2}{5}+4 \frac{2}{5}+4 \frac{2}{5}
$$

Step 1
Step 2
Step 3
$4 \times 5+2=\frac{22}{5} \frac{22 \times 3}{5}=\frac{66}{5} \quad \frac{13}{5 \longdiv { 6 1 6 }}=13 \frac{1}{5}$

Step 1

Convert the mixed fraction four and two-fifths into an improper fraction.
First, multiply the whole number 4 by the denominator 5 and then add the numerator 2 , to equal the new numerator of 22 .
The denominator remains the same as 5, making the improper fraction of twenty two-fifths.

Step 2
Multiply the improper fraction by the integer.
Then, multiply the numerator 22 by the integer 3, to equal the new numerator of 66 .
The denominator remains the same as 5 , making an improper fraction of sixty six-fifths.

Step 3
Convert the improper fraction into a mixed fraction.
Next, use short division and divide the numerator by the denominator.
66 (numerator) is divided by 5 (denominator), which is 13 remainder 1 .
The remainder 1 is written as a fraction, becoming the numerator and the denominator remains the same as 5 .
Finally, total value is thirteen and one-fifth. (Simplify if possible)

Test Questions

1) $4 \frac{2}{5} \times 3=$
2) $2 \frac{1}{3} \times 4=$ \qquad
3) $4 \frac{1}{3} \times 3=$
4) $3 \frac{5}{6} \times 4=$
5) $5 \frac{5}{6} \times 2=$ \qquad
6) $2 \frac{4}{5} \times 3=$ \qquad
7) $2 \frac{3}{5} x$
$5=$ \qquad
8) $4 \frac{1}{3} \times 5=$

Find The Missing Number

1) $\frac{1}{4} \mathrm{x} 2=\frac{1}{8}+\frac{?}{8}$

Strategy Applied

Step 1
First, calculate the known number sentence

$$
\frac{1}{4} \times 2
$$

Step 2
Then, multiply the numerator 1 by 2 the integer and the denominator 4 remains the same, to equal two-quarters.

Step 3
Next, we know now

$$
\frac{2}{4}=\frac{1}{8}+\frac{?}{8}
$$

Step 4
Then, make the denominators 4 and 8 equivalent, by working out the
Lowest Common Denominator (LCD), which is 8 .

Step 5
Next, for one-quarter, the denominator 4 is multiplied by 2 to make it
equivalent to 8 (LCD).
The numerator 2 is also multiplied by 2 , equal to 4 .
The equivalent fraction is $\frac{4}{8}$.

Step 6
Finally, $\frac{4}{8}=\frac{1}{8}+\frac{?}{8} \quad$ or the inverse of $\quad \frac{4}{8}-\frac{1}{8}=\frac{3}{8}$

The value of the missing numerator is 3 .

Test Questions

1) $\frac{1}{4} \times 2=\frac{1}{8}+\frac{}{8}$
2) $\frac{4}{9}+\frac{2}{3}=1+\frac{}{9}$
3) $\frac{2}{3} \times 4=\frac{}{15}$
4) $\frac{3}{8}+\ldots=1 \frac{1}{8}$
5) $\frac{1}{5}+\frac{3}{5}+\frac{2}{10}=\frac{}{20}$
6) $5 \frac{}{7}=37$
7) $\frac{2}{7}$ of $=40$
8) $1 \frac{1}{4}-\ldots \frac{7}{8}$
9) $\frac{3}{4}-\frac{}{8}=\frac{1}{2}$
10) $£ 35=\underline{2}$ of $£ 87.50$

Answers

P. 2

1) 7 million, 6 hundred thousands, 5 ten thousands, 4 thousand, 3 hundreds, 2 tens, 1 ones
2) 5 million, 1 hundred thousands, 2 ten thousands, 4 thousand, 6 hundreds, 1 tens, 9 ones
3) 6 million, 2 hundred thousands, 1 ten thousands, 7 thousand, 9 hundreds, 8 tens, 3 ones
4) 9 million, 3 hundred thousands, 5 ten thousands, 3 thousand, 7 hundreds, 7 tens, 4 ones
5) 8 million, 4 hundred thousands, 0 ten thousands, 6 thousand, 8 hundreds, 6 tens, 1 ones
6) 3 million, 5 hundred thousands, 3 ten thousands, 7 thousand, 9 hundreds, 0 tens, 2 ones
7) 1 million, 6 hundred thousands, 0 ten thousands, 1 thousand, 3 hundreds, 9 tens, 3 ones
8) 2 million, 7 hundred thousands, 2 ten thousands, 1 thousand, 5 hundreds, 4 tens, 8 ones
9) 5 million, 8 hundred thousands, 3 ten thousands, 4 thousand, 6 hundreds, 5 tens, 7 ones
10) 6 million, 0 hundred thousands, 9 ten thousands, 5 thousand, 3 hundreds, 7 tens, 2 ones

P. 4

1) $7,000,000,600,000,50,000,4,000,300,20,1$
2) $5,000,000,100,000,20,000,4,000,600,10,9$
3) $6,000,000,200,000,10,000,7,000,900,80,3$
4) $9,000,000,300,000,50,000,3,000,700,70,4$
5) $8,000,000,400,000,6,000,800,60,1$
6) $3,000,000,500,000,30,000,7,000,900,2$
7) $1,000,000,600,000,1,000,300,90,3$
8) $2,000,000,700,000,20,000,1,000,500,40,8$
9) $5,000,000,800,000,30,000,4,000,600,50,7$
10) $6,000,000,90,000,5,000,300,70,2$

Answers

P. 6

1) 134
2) 1,478
3) 10,360
4) 303
5) 1,404
6) 12,098
7) 1,917
8) 4,006
9) 10,400
10) 236
11) 1,899
12) 18,032
13) 311
14) 2,302
15) 15,033

P. 14

1) 709,535
2) 816,103
3) 156,784
4) 643,432
5) 790,422
6) 201,845
7) 692,772
8) $1,423,332$
9) 176,346
10) 733,392
11) $1,367,852$
12) $2,018,468$
13) $1,763,474$
14) 188,482

P. 8

1) 611,000
2) 600,000
3) 213,000
4) 331,000
5) 910,000
6) 465,000
7) 660,000
8) 225,000
9) 510,000
10) 895,000
11) 89,600
12) 33,012
13) 68,810
14) 42,560

P. 16

1) 53.724
2) 42.585
3) 120.80
4) 53.762
5) 133.509
6) 115.76
7) 89.072
8) 66.893
9) 245.81
10) 32.765
11) 120.804
12) 115.772
13) 245.824
14) 237.92
P. 10
15) $13.1,13.4$
16) 4,10
17) 75,90
18) 375,450
19) $-350-300$
20) 10,45
21) $5.7,7,6$
22) $6.3,7.2$
23) $3.7,4.6$
24) $0.75,1.65$
25) $\frac{7}{8}, \frac{1}{8}$
26) $4,5 \frac{1}{3}$
P. 12
27) 3.915
28) 3.863
29) 8.962
30) 8.996
31) 7.989
32) 6.888
33) 7.995
34) 10.112
35) 10.104
36) 6.906
37) 7.609
38) 10.048
39) 7.268
40) 9.152

P. 18

1) 5,850
2) 8,150
3) 370,701
4) 501,999
5) 292,888
6) 483,999
7) 244,888
8) 1,000
9) 1,000
10) 2,350
11) 1,650
12) 4,000
13) 2,000
14) 752,035
P. 20
15) 56
16) 522
17) 41
18) 797
19) 57
20) 793
21) 22
22) 695
23) 62
24) 865
25) 13
26) 70
27) 91
28) 700

Answers

P. 22

1) 528,000
2) 712,000
3) 542,000
4) 690,000
5) 693,000
6) 787,000
7) 680,000
8) 19,000
9) 760,000
10) 24,000
11) 510,000
12) 228,000
13) 860,000
14) 245,000
P. 24
15) $14.7,14.3$
16) $-6 \quad-14$
17) 45,39
18) 700,650
19) $-50 \quad-175$
20) $-390 \quad-455$
21) $3.1,2.4$
22) $7.0,6.5$
23) $11.1,10.7$
24) $-9.05-11.05$
25) $\frac{2}{9}$
26) $\frac{3}{8}, \frac{1}{8}$
P. 26
27) 1.111
28) 1.221
29) 4.214
30) 6.116
31) 4.508
32) 2.611
33) 1.301
34) 3.101
35) 7
36) 0.402
37) 3.016
38) 3.605
39) 4.304
40) 6.003

P. 30

1) 44.945
2) 18.889
3) 23.95
4) 49.217
5) 19.622
6) 17.45
7) 27.110
8) 28.101
9) 9.73
10) 23.627
11) 11.856
12) 27.03
13) 1.55 km
14) 57.62
15) 10,235
16) 14,143
17) 100
18) 70
19) 3,650
20) 98,900
21) 299,301
22) 484
23) 237
24) 398,900
25) 495,900
26) 712,800

P. 32

P. 34

1) 200
2) 280
3) 400
4) 480
5) 280
6) 720
7) 330
8) 360
9) 440
10) 480
11) 420
12) 720
13) 1,280
14) 2,050
P. 28
15) 15,922
16) 29,898
17) 2,494
18) 28,934
19) 8,504
20) 17,944
21) 31,312
22) 70,617
23) 34,549
P. 36
24) 2,400
25) 5,400
26) 4,000
27) 3,500
28) 3,000
29) 3,200
30) 2,100
31) 5,600
32) 4,900
33) 8,100
34) 1,100
35) 2,400
36) 6,300
37) 8,800

Answers

P. 38

1) $21.3,213,2,130$
2) $257,2,570,25,700$
3) $6,324,63,240,632,400$
4) $75.4,754,7,540$
5) $629,6,290,62,900$
6) $4,719,47,190,471,900$
7) $44.7,447,4,470$
8) $615,6,150,61,500$
9) $8,102,81,020,810,200$
10) $36.05,360.5,3,605$
11) $543.6,5,436,54,360$
12) $6,718,67,180,671,800$
13) $55.74,557.4,5,574$
14) $720.3,7,203,72.030$
15) $6,139,61,390,613,900$

P. 44

1) 66.230
2) 290.888
3) 34.56
4) 433.494
5) 267.290
6) 38.64
7) 653.492
8) 147.150
9) 431.15

P. 46

1) 1,992
2) 3,288
3) 2,444
4) 16,488
P. 40
5) 17
6) 24
7) 13
8) 25
9) 36
10) 80
11) 61
12) 74
13) 189
14) 206
15) 1,008
16) 133.0
17) 129
18) 108
19) 153,384
20) 331,093

P. $\mathbf{4 8}$	P. $\mathbf{5 0}$
1) 10	1) 110
2) 10	2) 90
3) 80	3) 70
4) 3,693	4) 60
5) 64	5) 60
6) 12	6) 40
7) 12	7) 40
8) 168	8) 80
9) 1,789	9) 60
10) 0	10) 50
11) 9	11) 70
12) 168	12) 90
13) 3,865	13) 120
14) 0	14) 120

Answers

P. 52

1) 60
P. 54
2) 60
3) 70
4) 110
5) 150
6) 120
7) 30
8) 70
9) 80
10) 50
11) 110
12) 90
13) 90
14) 120
15) $21.3,2.13,0.213$
P. 56
16) $3,139 \mathrm{r} 2$
17) $1,738 \mathrm{r} 1$
18) 4,480
19) 1,586
20) 351 r 1
21) $2,255 \mathrm{r} 4$
22) $4,142 \mathrm{r} 2$
23) 5,843
24) 8,752
25) 19,759

P. 58

1) 0.265
2) 1.385
3) 0.61
4) 1.23
5) 3.06
6) 0.965
7) 0.151
8) 0.824
9) 0.54
10) 0.932

P. 60

1) 220

P. 62

1) $5,470,000$

P. 64

1) $5,500,000$
2) $9,300,000$
3) $9,900,000$
4) $5,900,000$
5) $2,200,000$
6) $1,100,000$
7) $1,000,000$
8) $2,000,000$
9) $3,900,000$
10) $6,560,000$ 10) $6,600,000$
11) $6,320,000$
12) $6,300,000$
13) $8,700,000$
14) $9,100,000$
15) $3,000,000$

Answers

P. $\mathbf{6 6}$ 1) $5,000,000$	$\underline{\text { P. } \mathbf{6 8}}$	P. $\mathbf{7 0}$
2) $9,000,000$	1) 37.8	1) 120 cm
3) $7,000,000$	2) 45.6	2) 42 km
4) $6,000,000$	3) 49.5	3) $1,200 \mathrm{~m}$
5) $2,000,000$	4) 29.64	4) $£ 1.69$
6) $1,000,000$	5) 54.6	5) 300
7) $1,000,000$	6) 25.2	6) 100
8) $2,000,000$	7) 25.3	7) $£ 45.00$
9) $4,000,000$	8) 34.3	8) 77.00
10) $7,000,000$	9) 56.8	9) $£ 0.90$
11) $6,000,000$	10) 6.6	10) $£ 8.00$
12) $9,000,000$	11) 114	
13) $9,000,000$	12) 222.5	
14) $3,000,000$	$13) 235.2$	

P. 72

P. 74

1) $\frac{22}{15}$ or $\frac{7}{15}$
2) $\frac{13}{20}$
3) $\frac{43}{30}$ or $1 \frac{13}{30}$
4) $\frac{9}{20}$
5) $\frac{20}{12}$ or $1 \frac{2}{3}$
6) $\frac{7}{12}$
7) $\frac{9}{12}$ or $\frac{3}{4}$
8) $\frac{3}{6}$ or $\frac{1}{2}$
9) $\frac{13}{12}$ or $1 \frac{1}{12}$
10) $\frac{5}{9}$
11) $\frac{7}{12}$
12) $\frac{4}{9}$
13) $\frac{7}{8}$
14) $\frac{1}{20}$
15) $\frac{11}{12}$
16) $\frac{2}{30}$ or $\frac{1}{15}$
17) $\frac{8}{15}$
18) $\frac{3}{12}$ or $\frac{1}{4}$
19) $\frac{13}{30}$
20) $\frac{2}{9}$

Answers

P. 76

1) $\frac{8}{10}$ or $1 \frac{1}{4}$
2) $\frac{30}{7}$ or $4 \frac{2}{7}$
3) $\frac{9}{8}$ or $1 \frac{1}{8}$
4) $\frac{6}{5}$ or $1 \frac{1}{5}$
5) $\frac{3}{6}$ or $\frac{1}{2}$
6) $\frac{4}{5}$
7) $\frac{5}{6}$
8) $\frac{24}{7}$ or $3 \frac{3}{7}$

P. 78

1) $\frac{66}{5}$ or $13 \frac{1}{5}$
2) $\frac{28}{3}$ or
$9 \frac{1}{3}$
3) 3
4) 1
5) 40
6) $\frac{39}{3}$ or 13
7) $\frac{92}{6}$ or $15 \frac{1}{3}$
8) $\frac{6}{8}$
9) 20
P. 80
10) $\frac{70}{6}$ or $11 \frac{2}{3}$
11) $\frac{42}{5}$ or
$8 \frac{2}{5}$
12) 2 and 7
13) 140
14) $\frac{65}{5}$ or 13
15) $\frac{65}{3}$ or $21 \frac{2}{3}$
16) $\frac{3}{8}$
17) 2
18) 5

Glossary

Common Factor is a number which is a factor of two or more other numbers, e.g. 3 is a common factor of the numbers 9 and 30 .

Common Multiple is an integer which is a multiple of a given set of integers, e.g. 24 is a common multiple of $2,3,4,6,8$ and 12 .

Decimal Fraction is tenths, hundredths, thousandths etc. represented by digits following a decimal point. E.g. 0.125 is equivalent to $1 / 10+2 / 100+$ $5 / 1000$ or $1 / 8$. The decimal fraction representing $1 / 8$ is a terminating decimal fraction since it has a finite number of decimal places. Other fractions such as $1 / 3$ produce recurring decimal fractions, these have a digit or group of digits that is repeated indefinitely.

Denominator is the number written below the line i.e. the divisor. e.g. in the fraction $2 / 3$ the denominator is 3 .

Digit Value is the value of a digit that relates to its position or place in a number. e.g. in 82 the digits represent 8 tens and 2 ones.

Equivalent Fraction are fractions with the same value as another. e.g. $4 / 8,5 / 10,8 / 16$ are all equivalent fractions and all are equal to $1 / 2$.

Exchanging is to exchange a number for another of equal value. The process of regrouping is used in some standard compact methods of calculation. e.g.: 'carrying figures/exchanging' in addition, multiplication or division; and 'decomposition' in subtraction.

Factor is when a number, can be expressed as the product of two numbers, these are factors of the first. E.g. 1, 2, 3, 4, 6 and 12 are all factors of 12 because $12=1 \times 12=2 \times 6=3 \times 4$.

Glossary

Highest Common Factor (H.C.F.) is the common factor of two or more numbers which has the highest value.
e.g. 16 has factors $1,2,4,8,16.24$ has factors $1,2,3,4,6,8,12,24$. 56 has factors $1,2,4,7,8,14,28,56$. The common factors of 16,24 and 56 are 1, 2, 4 and 8 . Their highest common factor is 8 .

Indices are calculations recorded in notation form as numbers multiplied b power of between 1 and 10 . Example: 2 is equal to $2 \times 2 \times 2=8$

Improper Fraction is an improper fraction has a numerator that is greater than its denominator. Example: 9/4 is improper and could be expressed as the mixed number $21 / 4$.

Integer is any of the positive or negative whole numbers and zero. e.g. ...2, $-1,0,+1,+2 \ldots$

Lowest Common Multiple (L.C.M.) is the common multiple of two or more numbers, which has the least value. E.g. 3 has multiples 3, 6, 9, 12, 15 4 has multiples $4,8,12,16,20,24 \ldots$ and 6 has multiples $6,12,18,24,30 \ldots$ The common multiples of 3, 4 and 6 include 12, 24 and 36 . The lowest common multiple of 3,4 and 6 is 12 .

Mixed Fraction is a whole number and a fractional part expressed as a common fraction. e.g. $11 / 3$ is a mixed fraction or mixed number.

Mixed Number is a whole number and a fractional part expressed as a common fraction. Example: $2 \quad 1 / 4$ is a mixed number.
Also known as a mixed fraction.

Multiple is the result of multiplying a number by an integer, e.g. 12 is a multiple of 3 because $3 \times 4=12$.

Glossary

Non-Unit Fraction is a fraction that has a value of 2 or more as the numerator and whose denominator is a non-zero integer. E.g. 1/2, 1/3.

Numerator is the number written on the top- the dividend (the part that is divided). In the fraction $2 / 3$, the numerator is 2 .

Operations that, when they are combined, leave the entity on which they operate unchanged. Examples: addition and subtraction are inverse operations e.g. $5+6-6=5$. Multiplication and division are inverse operations e.g. $6 \times 10 \div 10=6$.

Partition 1) To separate a set into subsets. 2) To split a number into component parts. e.g. the two-digit number 38 can be partitioned into $30+8$ or $19+19.3$) A model of division. e.g. $21 \div 7$ is treated as 'how many sevens in 21?'

Percentage 1) A fraction expressed as the number of parts per hundred and recorded using the notation $\%$. E.g. One half can be expressed as 50%; The whole can be expressed as 100% 2) Percentage can also be interpreted as the operator 'a number of hundredths of. E.g. 15% of Y means $\mathrm{Y} \div 100 \times 15$.

Place Holder In decimal notation, the zero numeral is used as a place holder to denote the absence of a power of 10 .

Place Value is the value of a digit that relates to its position or place in a number. e.g. in 1482 the digits represent 1 thousand, 4 hundred, 8 tens and 2 ones respectively; in 12.34 the digits represent 1 ten, 2 ones, 3 tenths and 4 hundredths respectively.

Proper Fraction has a numerator that is less than its denominator so $3 / 4$ is a proper fraction, whereas $4 / 3$ is an improper fraction.

Glossary

Regrouping is to exchange a number for another of equal value. The process of regrouping is used in some standard compact methods of calculation. e.g.: 'carrying figures/exchanging' in addition, multiplication or division; and 'decomposition' in subtraction.

Remainder in the context of division requiring a whole number answer (quotient), the amount remaining after the operation. e.g. 29 divided by $7=4$ remainder 1 .

Simplify Fraction is to simplify a fraction down to its lowest terms. The numerator and denominator are divided by the same number e.g. $4 / 8=2 / 4$, also to 'reduce' a fraction.

When the numerator and denominator are both divided by their highest common factor the fraction is said to have been cancelled down to give the equivalent fraction in its lowest terms. e.g. 18/30 $=3 / 5$ (dividing numerator and denominator by 6).

Unit Fraction is a fraction that has 1 as the numerator and whose denominator is a non-zero integer. e.g. $1 / 2,1 / 3$.

