Year 4

Arithmetic

Workbook

by Richard Brown

Contents Page

Place Value
How Many 1-2
Digit Value 3-4
Add
1,000 More 5-6
More Than 1,000 7-8
Bonds to 1,000 9- 10
Multiple Numbers 11-12
Multiples of 6, 7, 9, 25, 100 13-14
Decimals 15-16
Column Addition 17-18
Column Addition with Decimals 19-20
Find the Missing Number 21-22
Subtract
1,000 Less 23-24
More Than 1,000 25-26
Bonds to 1,000 27-28
Multiple Numbers 29-30
Multiples of 6, 7, 9, 25, 100 31-32
Decimals 33-34
Column Subtraction 35-38
Column Subtraction with Decimals 39-40
Find the Missing Number 41-42
Multiply
Step Counting 43-44
Multiple Numbers 45-46
x10 and x100 47-48

Contents Page

Multiply
Short Multiplication 49-50
Short Multiplication with Decimals 51-52
Find the Missing Number 53-54
Divide
Inverse of Division 55-56
$\div 10$ and $\div 100$ 57-58
Short Division 59- 60
Short Division with Decimals 61-62
Find the Missing Number 63-64
Negative Numbers
Add and Subtract Integers 65-66
Rounding
To Nearest 10 67- 68
To Nearest 100 69-70
To Nearest 1000 71-72
Fractions
Fraction of a Quantity 73-74
Add Proper Fractions 75-76
Subtract Proper Fractions 77-78
Find the Missing Number 79-80
Answers and Glossary 81-90

Key Language and Representations

Word Problems are the arithmetic number sentences written in a real-life reasoning and problem solving scenario.

Concrete Objects are manipulated or handled to calculate and represent a number sentence i.e. counters, multilink cubes, fraction tiles, metric rulers

$$
\text { e.g. } 2,000+3,000=5,000 \square \square+\square|\square| \square=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline
\end{array}
$$

Metric Ruler used to count forwards e.g. 0, 6, 12, 18, 24, 30 and also to count backwards e.g. 54, 45, 36, 27, 18, 9 .

Column Addition is the formal written method of adding two or more numbers together, using a vertical arrangement in a columnar format, with regrouping.

100s 10s 1s	1,000s	100s	10s 1		1,000s 100 s		10s 1s	
420	5,000	200	70	4	6	3	8	5
230	2,000	100	50	8	1	2	4	7
+ 140	+ 7,000	400	30	2	+ 7	6	3	2
790		100	10			1	1	

Column Subtraction is the formal written method of subtracting a smaller number from a bigger number, using a vertical arrangement in a columnar format, with regrouping.

Strategy Applied refers to when a formal written method is used to calculc a number sentence e.g. $30,250-5,000=25,250$
Explained using appropriate mathematical language, proven using concrete objects that can be handled, shown with pictorial representations visualising the calculations, to ensure a greater understanding of a mathematical conce]

Part Whole Models are pictorial mathematical images to represent varied calculations and number sentences.
e.g. $6,000+3,000=? \underline{? 9,000}$
e.g. $9,000-2,000=? 7,000$

Bar Models are an image, that pictorially represents a number sentence.
e.g. $3,000+9,000=? \underline{12,000}$
e.g $20,000-2,000=?$

3,000	9,000
	$? 12,000$

20,000	
2,000	$? 18,000$

Groups of objects represents a total number of objects shared or divided into two or more groups of an equal number of the objects.

$$
\frac{3}{4} \text { of } 1,600=1,200
$$

- represents the value of 100

Group 1

Group 2
Group 3

Group 4

Number Grid

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109
110	111	112	113	114	115	116	117	118	119
120	121	122	123	124	125	126	127	128	129
130	131	132	133	134	135	136	137	138	139
140	141	142	143	144	145	146	147	148	149
150	151	152	153	154	155	156	157	158	159

Multiplication Square

x	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0
1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100
11	22	33	44	55	66	77	88	99	110
12	24	36	48	60	72	84	96	108	120

Decimal Number Grid

0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9
3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9
4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9
5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9
6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9
7.0	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9
8.0	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9
9.0	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9
10.0	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9
11.0	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9
12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9
13.0	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9
14.0	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9
15.0	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9

Fraction Walls

1 Whole																
1									1							
1				1					1				1			
			1		1		1		1			1		1		1
			8		8		8		8			8		8		8
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16	16	16	16	16	16	1	16	16	16	16	16	16		16		16

1 Whole																				
1											1									
2											2									
1				1					1				1				1			
5				5					5				5				5			
	1		1		1		1		1			1		1		1				
	0		0		0		10		10			0		0		0				
1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1
20	20	20	20	20	20	20		20	0	20	20	20	20	20	20	20	20	20	20	20

How Many

The number 1234.56 is made up of how many $\mathbf{1 , 0 0 0}$ s (thousands), $\mathbf{1 0 0}$ s (hundreds), 10s (tens), 1s (ones), 10ths (tenths) and 100ths (hundredths)?

1) 1234 - $56=$

In Maths a number or figure e.g. 1234.56, is made up of the digits 1, 2, 3, 4, 5, 6 .
Each digit has a worth, otherwise known as its place value.
The number one thousand, two hundred and thirty four point five six is a 6-digit decimal number.
The digits represent the following column place values the $1,000 \mathrm{~s}, 100 \mathrm{~s}$, $10 \mathrm{~s}, 1 \mathrm{~s}, 10$ ths and 100 ths.

Place Value Grid

$\underline{1000 \mathrm{~s}}$	$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 s}$	\cdot	$\underline{10 t h s}$	$\underline{100 t h \mathrm{~s}}$
1	2	3	4	\cdot	5	6

Strategy Applied

The number one thousand, two hundred and thirty four is represented on a Place Value Grid as above.

First, write 6 in the 100ths column place value, which is also how many hundredths there are in the 100ths column, 6 hundredths.

Then, write 5 in the 10ths column place value, which is also how many tenths there are in the 10 ths column, 5 tenths.

Next, write 4 in the $\mathbf{1 s}$ column place value, which is also how many ones there are in the 1 s column, 4 ones.

Then, write 3 in the 10 s column place value, which is also how many tens there are in the 10 s column, 3 tens.

Next, write 2 in the 100s column place value, which is also how many hundreds there are in the 100s column, 2 hundreds.

Then, write 1 in the $\mathbf{1 , 0 0 0}$ s column place value, which is also how many thousands there are in the $1,000 \mathrm{~s}$ column, 1 thousand.

Finally, the Place Value Grid above shows how many $\mathbf{1 , 0 0 0 s}, \mathbf{1 0 0}$ s, $\mathbf{1 0 s}$, $1 \mathrm{~s}, 10$ ths and 100 ths there are, 1 thousand, 2 hundred, 3 tens, 4 ones, 5 tenths and 6 hundredths.

Test Questions

How many 1,000s (thousands), 100s (hundreds), 10s (tens), 1s (ones), 10ths (tenths) and 100ths (hundredths) make up each number?

1) $1,234.56=$ \qquad 6) $5,379.02=$ \qquad
2) $1,246.19=$ \qquad 7) $6,513.93=$ \qquad
3) $2,179.83=$
4) $7,215.48=$ \qquad
5) $3,537.74=$ \qquad 9) $8,346.57=$ \qquad
6) $4,068.61=$ \qquad
7) $9,537.20=$ \qquad

Digit Value

What is the digit value of the $\mathbf{1 , 0 0 0}$ (thousands), $\mathbf{1 0 0 s}$ (hundreds), $\mathbf{1 0 s}$ (tens 1s (ones), 10ths (tenths) and 100ths (hundredths) in the number 1,234.56?

1) 1234 . $56=$

In Maths a number or figure e.g. 1234.56, is made up of the digits 1, 2, 3, 4, 5, 6 .
Each digit has a worth, otherwise known as its place value.
The number one thousand, two hundred and thirty four point five six is a 6-digit decimal number.
Each digit represents the $1 \mathrm{~s}, \mathbf{1 0}$ s, 100 s and $1,000 \mathrm{~s}$ column place values.

Place Value Grid

1000 s	$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 \mathrm{~s}}$	\cdot	$\underline{10 t h s}$	$\underline{100 t h \mathrm{~s}}$
1	2	3	4	\cdot	5	6

Strategy Applied

The number one thousand, two hundred and thirty four is represented on a Place Value Grid as above.

First, in the $\mathbf{1 0 0 t h s}$ column the value of the digit is worked out by dividing how many hundredths there are, 6 by 100 ($\mathbf{1 0 0 t h s}$ column), which is 0.06 .

Then, in the 10ths column the value of the digit is worked out by dividing how many tenths there are, 5 by 10 (10ths column), which is 0.5 .

Next, in the 1 s column the value of the digit is worked out by multiplying how many ones there are, 4 by 1 (1 s column), which is 4 .

Then, in the 10 s column the value of the digit is worked out by multiplying how many tens there are, 3 by 10 ($\mathbf{1 0}$ s column), which is 30 .

Next, in the 100s column the value of the digit is worked out by multiplyin how many hundreds there are, 2 by 100 (100s column), which is 200 .

Then, in the $1,000 \mathrm{~s}$ column the value of the digit is worked out by multiplying how many thousands there are, 1 by 1,000 ($\mathbf{1 , 0 0 0}$ s column), which is 1,000 .

Finally, the digit value of the $1,000 \mathrm{~s}, \mathbf{1 0 0} \mathrm{~s}, \mathbf{1 0 s}, \mathbf{1 s}, 10$ ths and $\mathbf{1 0 0}$ digits is $1,000200,30,4$ 0.5, 0.06,

Test Questions

What is the digit value of the $\mathbf{1 , 0 0 0}$ (thousands), 100s (hundreds), 10s (tens), $\mathbf{1 s}$ (ones), 10ths (tenths) and 100ths (hundredths) in each number?

1) $1,234.56=$
2) $1,246.19=$ \qquad
3) $2,179.83=$ \qquad
4) $3,537.74=$ \qquad
5) $4,068.61=$ \qquad
6) $5,379.02=$ \qquad 7) $6,513.93=$ \qquad
7) $7,215.48=$ \qquad
8) $8,346.57=$ \qquad
9) $9,537.20=$ \qquad

1,000 more

1) $1,750+1,000=?$

Word Problem

Susan is thinking of a number. Her number is one thousand more than one thousand, seven hundred and fifty.
What is her number?

Partitioning

Column Addition

$$
\begin{aligned}
& 1, ~ 000+1, ~ 000=2, ~ 000 \quad 1,000 \mathrm{~s} 100 \mathrm{~s} 10 \mathrm{~s} \text { s } 1 \mathrm{~s} \\
& 700+0=700 \\
& 50+0=50 \\
& 0+
\end{aligned}
$$

Strategy Applied

Partition both numbers into $\mathbf{1 , 0 0 0}, \mathbf{1 0 0 s}, 10 \mathrm{~s}, 1 \mathrm{~s}$ and add together their relative digit values.
$1,750=1,000+700+50+0$ and $1,000=1,000+0+0+0$.
First, add the 1,000 s digit values of one thousand and one thousand, equal to two thousand.
Then, add the $\mathbf{1 0 0}$ s digit values of seven hundred and zero, equal to seven hundred.
Next, add the 10s digit values of fifty and zero, equal to fifty.
Then, add the 1 s digit values of zero and zero, equal to zero.
Next, use column addition to add the values of $2,000+700+50+0=2,750$.
Finally, 1,750 plus 1,000 equals 2,750 .

Part Whole Model

Bar Model

Test Questions

1) $1,750+1,000=$ \qquad
2) $2,559+1,000=$ \qquad
3) $3,699+1,000=$ \qquad
4) $4,455+1,000=$ \qquad
5) $5,308+1,000=$ \qquad
6) $6,700+1,000=$ \qquad
7) $7,619+1,000=$ \qquad
8) $8,591+1,000=$ \qquad
9) $9,455+1,000=$ \qquad
10) $9,309+1,000=$ \qquad
11) $1,000+309=$ \qquad
12) $1,000+455=$ \qquad
13) $1,000+591=$ \qquad
14) $1,000+710=$

More Than 1,000

1) ? $+1,250=3,230$

Word Problem

London to Warsaw is three thousand, two hundred and thirty miles.
Paris to Warsaw is one thousand, two hundred and fifty miles.
What is the distance from London to Paris?

Number Line

Strategy Applied

A number grid or a ruler can be used to count on.
First, draw a number line and write one thousand, two hundred and fifty at the start and three thousand, two hundred and thirty at the end. Then, from 1,250 count on in 10s to the next multiple of 100s, 1,260, $1,270,1,280,1,290,1,300$ equal to fifty.
Next, from 1,300 count on in $\mathbf{1 0 0}$ s to the next multiple of $\mathbf{1 , 0 0 0}$ s, 1,400 , $1,500,1,600,1,700,1,800,1,900,2,000$ equal to seven hundred.
Then, from 2,000 count on in 1,000 s to the next multiple of $1,000 \mathrm{~s}$, 3,000 equal to one thousand.
Next, from 3,000 count on in 100s to the multiple of 100s before 3,230, $3,100,3,200$ equal to two hundred.
Then, from 3,200 count on in 10 s on to $3,230,3,210,3,220,3230$, equal to thirty.
Next, add from largest to smallest the amounts that were counted on, 1,000 and 700 and 200 and 50 and 30.
Finally, the missing number is 1,980 .

Column Addition

1	0	0	0
	7	0	0
	2	0	0
		5	0
		3	0
1,	9	8	0

Test Questions

1) $\ldots+1,250=3,230$
2) $\ldots+2,230=4,700$
3) $\ldots+3,500=5,650$
4) $\ldots+4,190=6,280$
5) $\ldots+5,250=7,800$
6) $420+\ldots=2,600$
7) $350+\ldots=3,680$
8) $220+\ldots=4,550$
9) $200+\ldots=5,580$
10) $640+{ }_{C}=6,850$
11) $2,200+3,520=$ \qquad
12) $3,050+1,000=$ \qquad
13) $2,800+1,190=$ \qquad
14) $4,040+5,700=$ \qquad

Bonds to 1,000

1) $150+?=1,000$

Word Problem

A Charity Shop has raised one hundred and fifty pounds in donations. The total amount to be raised is one thousand pounds.
How much more money is needed to be raised?

Number Line

Strategy Applied

Number bonds to $\mathbf{1 , 0 0 0}$, means two or more numbers added together that make the number $\mathbf{1 , 0 0 0}$.
First, draw a number line and write one hundred and fifty at the start and one thousand at the end.
Then, from 150 count on in 10 s to the next multiple of 100s, 160, 170, 180, 190, 200 equal to fifty.
Next, from 200 count on in 100s up to one thousand, 300, 400, 500, $600,700,800,900,1,000$ equal to 800 .
Then, add from largest to smallest the amounts counted on 800 and 50 , equal to 850 .
Finally, the value of the missing number is eight hundred and fifty.

Part Whole Model

Bar Model

150	$\underline{? 850}$
1,000	

Test Questions

1) $150+\ldots=1,000$
2) $240+\ldots=1,000$
3) $360+\ldots=1,000$
4) $480+\ldots=1,000$
5) $\ldots+190 p=1000 p$
6) $\ldots+270 p=1000 p$
7) $\ldots+£ 300=£ 1,000$
8) \qquad $+£ 500=£ 1,000$
9) \qquad $+100=1,000$
10)__ + $720=1,000$
10) __ $+250=1,000$
11) $_+570=1,000$
12) __ $+480=1,000$
13) \qquad $+650=1,000$

Multiple Numbers

1) $200+300+400=?$

Word Problem

Three children raise money for a Homeless Charity. Child A raised $£_{2} 200$, Child B raised $£ 300$ and Child C raised $£ 400$.
What is the total amount of money raised by all three children?

Number Line

Strategy Applied

First, find and touch the number two hundred on the number line.
Then, count forwards 300 more in multiples of 100s, 300, 400, 500 aloud in number order, whilst touching the numbers on the number line. Next, the number counted on to should be five hundred.
Then, count forwards 400 more in multiples of 100s, 600, 700, 800, 900 aloud in number order, whilst touching the numbers on the number line. Next, the number counted on to should be nine hundred. Finally, 200 plus 300 plus 400 equals 900 .

Concrete Object

Column Addition

100s 10s 1 s

200	0	
300	0	
+4	0	0
9	0	0

Part Whole Model

Bar Model

200	300	400
$? 900$		

Test Questions

1) $200+300+400=$
2) $900+800+700=$
3) $600+300+300=$
4) $300+3,000+300=$
5) $1,000+4,000+2,000=$ \qquad
6) $2,000+3,000+5,000=$ \qquad
7) $100 \mathrm{p}+500 \mathrm{p}+200 \mathrm{p}=$ \qquad
8) $£ 400+£ 500+£ 900=$ \qquad
9) $200 \mathrm{~cm}+400 \mathrm{~cm}+300 \mathrm{~cm}=$ \qquad
10) $400 \mathrm{~m}+500 \mathrm{~m}+600 \mathrm{~m}=$
11)__ $=700+900+600$
12)__ $=1,500+1,500+1,500$
11) __ $=900+900+700$
12) \qquad $=6,000+2,000+1,000$

Multiples of 6, 7, 9, 25, 100

In the number pattern below, find the next two missing terms.

1) $0,6,12, ?$?

Word Problem

Lee uses objects to make the number pattern of zero, six and twelve. What will be the next two terms in the number pattern?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule. First, count forwards from zero to six equalling six, the rule is +6 . Then, count forwards from six to twelve equalling six, the rule is +6 . The rule is +6 (count on six) to each of the numbers in the number pattern.
Continue this number pattern to find the next two missing numbers. Next, find twelve on the number line and count on six more, equal to eighteen.
Then, find eighteen on the number line and count on six more, equal to twenty four.
Finally, the next two missing terms in the number pattern are eighteen and twenty four.

Metric Ruler

Test Questions

1) $0,6,12$, \qquad
2) $24,30,36$, \qquad
3) $40,46,52$, \qquad
4) $0,7,14$, \qquad
5) $28,35,42$, \qquad
6) $50,57,64$, \qquad
7) $0,9,18$, \qquad
8) $36,45,54$, \qquad
9) $10,19,28$, \qquad
10) $0,25,50$, \qquad
11) $20,45,70$, \qquad
12) $100,125,150$, \qquad
13) $15,115,215$, \qquad
14) 383, 483, 583, \qquad

Decimals

1) $2.1+1.8=?$

Word Problem

Mr . Ben and Dr. Barrie are playing guess my number.
The number is one point eight more than two point one.

Partitioning

Column Addition

$$
\begin{aligned}
& \begin{array}{l}
2 \cdot 0+1.00=3 \cdot 0 \\
0 \cdot 1+0 \cdot 8=\frac{0}{3} \cdot 9
\end{array}+ \\
& \text { 1s 10ths } \\
& \begin{array}{rrr}
2 & . & 1 \\
+1 & . & 8 \\
\hline 3 & . & 9 \\
\hline
\end{array}
\end{aligned}
$$

Strategy Applied

Partition both numbers into 1s, 10ths and add together their relative digit values.
$2.1=2.0+0.1$ and $1.8=1.0+0.8$.
First, add the 1 s place values of two and one, which is equal to three.
Then, add the 10ths place values of zero point one and zero point eight, which is equal to zero point nine.
Next, use column addition to add the values of $3.0+0.9=3.9$.
Finally, 2.1 plus 1.8 is equal to 3.9 .

Decimal Number Grid

2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9
3.0	\downarrow 3.1>3.2	3.3	3.4	3.5	3.6	3.7	$3.8 \rightarrow 3.9$		

Part Whole Model

Bar Model

Test Questions

1) $2.1+1.8=$
2) $1.3+2.5=$ \qquad
3) $2.6+6.3=$ \qquad
4) $7.5+1.4=$ \qquad
5) $6.2+1.7=$ \qquad
6) $4.7+2.1=$ \qquad
7) $3.7+4.4=$ \qquad
8) $6.1+3.9=$ \qquad
9) $1.9+8.1=$ \qquad
10) $3.6+3.2=$ \qquad
11) $=5.4+2.2$
12) $\quad=6.7+3.3$
13) $=5.5+1.7$
14) $=7.2+1.9$

Column Addition

1) $3,835+2,246=?$
Step 1
$\begin{array}{r}3835 \\ +224 \\ \hline 81 \\ \hline 1\end{array}$

Step 2

Step 3

3	8	3	5
+2	2	4	6
6,	0	8	1
1	1		

Strategy Applied

Step 1
First, in the 1 s column add altogether, $5+6$, equals 11 ones $(10+1)$.
Write 1 in the total value of the 1 s column.
Exchange/Regroup the 10 ones into 1 ten the from the 1 s column to the 10s column and write 1 ten below the total value line of the 10 s column.
Then, in the 10 s column add altogether, $3+4+1$, equals 8 tens (80).
Write 8 in the total value of the 10 s column.

Step 2

Next, in the 100s column add altogether, $8+2$, equals 10 hundreds (1,000 + 0).
Write 0 in the total value of the 100 s columns.
Exchange/Regroup the 10 hundreds into 1 thousand from the 100s column to the 1,000 s column and write 1 thousand below the total value line of the $1,000 \mathrm{~s}$ column.

Step 3
Finally, in the 1,000 s column add altogether, $3+2+1$, equals 6 thousands $(6,000)$.
Write 6 in the total value of the 1,000 s column.
Total value is 6,081 .

Part Whole Model

Bar Model

Test Questions

1)	3	8	3	5	2)	4	4	1	3	7	3)	4	1		35	5
$+$	2	2	4	6	+	1	2	2	4	8		2	1			7
											+	1	2			8

4) $825 \quad 5$
 $+\begin{array}{r}165 \\ \hline\end{array}$

5) $527 \quad 9$
$+\begin{array}{r}483 \\ \hline\end{array}$
6) $\begin{array}{r}734 \\ 1 \\ 1569 \\ + \\ \hline\end{array}$

$\begin{array}{r}10 \lcm{3} \\ +\quad 2 \quad 5 \quad 6 \quad 8 \\ \hline\end{array}$
7) 6206
$+\begin{array}{r}687 \\ \hline\end{array}$
8) 3260
$+\quad 448$
9) | 5 | 2 | 7 | 9 |
| ---: | ---: | ---: | ---: |
| 5 | 4 | 8 | 3 |
| 4 | 3 | 0 | 4 |
| + | 5 | 6 | 8 |
10) | 6 | 2 | 8 | 9 |
| ---: | ---: | ---: | ---: |
| 5 | 6 | 8 | 4 |
| 5 | 3 | 0 | 4 |
| + | 5 | 6 | 9 |

Page 18

Column Addition with Decimals

1) $48 \cdot 53+25 \cdot 71=?$

Step 3 | 4 | $\mathbf{8}$ | \cdot | $\mathbf{5}$ | $\mathbf{3}$ |
| ---: | ---: | ---: | ---: | ---: |
| + | $\mathbf{5}$ | \cdot | 7 | $\mathbf{1}$ |
| | 4 | \cdot | 2 | 4 |
| 1 | 1 | | | |

Strategy Applied

Step 1
First, in the 100ths column add altogether, $3+1$, equals 4 hundredths (0.04).

Step 2

Then, in the 10ths column add altogether, $5+7$, equals 12 tenths ($1+0.2$).
Write 2 in the total value of the 10ths column.
Exchange/Regroup the 10 tenths into 1 one from the 10ths column to the 1 s column and write 1 one below the total value line of the 1 s columr

Step 3

Next, in the 1 s column add altogether, $8+5+1$, equals 14 ones $(10+4)$. Write 4 in the total value of the 1 s column.
Exchange/Regroup the 10 ones into 1 ten from the 1 s column to the 10s column write 1 ten below the total value line of the 10s column.

Step 4

Finally, in the 10s column add altogether, $4+2+1$, equals 7 tens (70). Write 7 in the total value of the 1 s column.
Total Value is 74.24.

Part Whole Model

Bar Model

48.53	25.71
? 74.24	

Test Questions

1) 48.53

$+$| 25.71 |
| :--- |

2) $38 \cdot 37$
+24 . 48
3) $45 \cdot 31$

27	3	1		
+	8	.	4	2

$$
\text { 4) } 47.57
$$

5) $45 \cdot 7 \quad 9$
$+28.83$
6) 70 . 43
$\begin{array}{r}19 \quad . \\ +\begin{array}{r}7 \\ 5\end{array} \\ \hline\end{array}$
7) | 5 | 9 | . | 7 | 2 |
| ---: | :--- | :--- | :--- | :--- |
| 5 | 3 | \cdot | 8 | 4 |
| 4 | 4 | \cdot | 0 | 3 |
| + | 8 | . | 6 | 5 |
| | | . | | |

11) 50 . 06
$\begin{array}{r}36 \quad 8 \quad 7 \\ \hline\end{array}$

$$
\text { 14) } \begin{array}{lllll}
6 & 9 & . & 8 & 2 \\
5 & 4 & . & 8 & 6
\end{array}
$$

13) $13 \cdot 27$
14) 96.38

$+$| $9 \quad 3 \quad 8$ |
| :--- |

Find the Missing Number

1) $7942 \mathrm{~cm}+379 \mathrm{~cm}=? ~ \mathrm{~cm}+7,021 \mathrm{~cm}$

Strategy Applied

Step 1
First, add up the known number sentence, which is $7942 \mathrm{~cm}+379 \mathrm{~cm}$.

Then, in the 1 s column add altogether, $2+9$, equals 11 ones $(10+1)$. Write 1 in the total value of the 1 s column.
Exchange/Regroup the 10 ones into 1 ten from the 1 s column to the 10s column and write 1 ten below the total value line of the 10 s column.

Next, in the 10s column add altogether, $4+7+1$, equals 12 tens $(100+20)$.
Write 2 in the total value of the 10 s column.
Exchange/Regroup the 10 tens into 1 hundred from the 10s column to the 100s column and write 1 hundred below the total value line of the 100s column.

Then, in the 100 s column add altogether, $9+3+1$, equals
13 hundreds ($1000+300$).
Write 3 in the total value of the 100 s column.
Exchange/Regroup the 10 hundreds into 1 thousand from the 100s column to the 1,000 s column and write 1 thousand below the total value line of the $1,000 \mathrm{~s}$ column.
In the $\mathbf{1 , 0 0 0}$ s column add altogether, $7+1$, equals 8 thousands (800).

Finally write 8 in the total value of the $\mathbf{1 , 0 0 0}$ s column.
Total value is 8,321 .

$$
\begin{array}{r}
79 \\
+\quad 3 \\
+\quad 37 \\
\hline 8, \\
\hline
\end{array}
$$

Step 2
New known fact $\quad 8321 \mathrm{~cm}=$? $\mathrm{cm}+7,021 \mathrm{~cm}$
The value of the 10 s and 1 s in $8,3 \underline{21}$ and $7,0 \underline{21}$ are the same, $\underline{21}$.
First, count on in $1,000 \mathrm{~s}, 7,021 \mathrm{~cm}$ on to $8,021 \mathrm{~cm}$, equal to $1,000 \mathrm{~cm}$.
Then, count on in $100 \mathrm{~s}, 8,021 \mathrm{~cm}$ up to $8,321 \mathrm{~cm}$, equal to 300 cm .
Finally, add the amounts counted on $1,000 \mathrm{~cm}$ and 300 cm , equals $1,300 \mathrm{~cm}$.

Number Line

Test Questions

1) $7,942 \mathrm{~cm}+379 \mathrm{~cm}=\ldots \mathrm{cm}+7,021 \mathrm{~cm}$
2) $379+2742=479+$
3) $£ 2.45+£ 1.75=$
4) $£ 8.56+208$ pence +75 pence $=$ \qquad
5) 1 hour 23 mins $+Z_{-}=3$ hours 10) $18+6+6=$
6) 1 metre +350 centimetres $=$ 11) $28+7+7=$
7) 3 litres $=\ldots \mathrm{ml}+1257 \mathrm{ml}$ 12) $63+9+9=$
8) $4,500+776+95=$
9) $250+25+25=$ \qquad
10) $0.36+\ldots=1$
11) $375+25+25=$ \qquad

1,000 Less

1) $1,280-1,000=?$

Word Problem

A road is one thousand, two hundred and eighty metres long.
Diane cycles one thousand metres along the road.
How much further to the end of the road?

Partitioning

Column Subtraction

$$
\begin{aligned}
& \text { 1, } 0 \quad 0 \quad 0-1, ~ 0 \quad 0 \quad 0= \\
& 200-0=200 \\
& 80-0=80 \\
& 0-0=\begin{array}{|}
\hline 280 \\
\hline
\end{array}+
\end{aligned}
$$

$-$| 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 2 | 8 | 0 |

Strategy Applied

Partition both numbers into $\mathbf{1 , 0 0 0}$ s, 100s, 10s, 1 s and subtract their relative digit values.
$1,280=1,000+200+80+0$ and $1,000=1,000+0+0+0$.
First, subtract the 1,000 s digit values of one thousand and one thousand, which is equal to zero.
Then, subtract the 100s digit values of two hundred and zero, which is equal to two hundred.
Next, subtract the 10s digit values of eighty and zero, which is equal to eighty.
Then, subtract the 1 s digit values of zero and zero, which is equal to zero. Then, use column addition to add the values of $200+80+0+0=280$. Finally, 1,280 minus 1,000 is equal to 280 .

Part Whole Model

Bar Model

Test Questions

1) $1,280-1,000=$ \qquad
2) $2,520-1,000=$ \qquad
3) $3,489-1,000=$ \qquad
4) $4,345-1,000=$ \qquad
5) $5,250-1,000=$ \qquad
6) $6,222-1,000=$ \qquad
7) $7,340-1,000=$ \qquad
8) $8,400-1,000=$ \qquad
9) $9,690-1,000=$ \qquad
10) $9,710-1,000=$ \qquad
11)__ $=1,210-1,000$
12)__ $=4,784-1,000$
13)__ $=7,969-1,000$
14)__ $=9,907-1,000$

More Than 1,000

1) $8,700-3,750=?$

Word Problem

My parents are thinking of buying a new car costing eight thousand, seven hundred pounds. They decide to buy a car that is three thousand, seven hundred and fifty pounds cheaper. What is the cost of the car?

Number Line

Strategy Applied

Use the inverse of subtraction, which is addition and count on from the smallest number to the largest number.
Use a ruler or number grid to help when counting on.
First, draw a number line and write three thousand, seven hundred and fifty at the start and eight thousand, seven hundred at the end. Then, from 3,750 count on in 10s to the next multiple of 100s, 3,760 , $3,770,3,780,3,790,3,800$ equal to fifty.
Next, from 3,800 count on in 100s to the next multiple of $1,000 \mathrm{~s}, 3,900$, 4,000 equal to two hundred.
Then, from 4,000 count on in $\mathbf{1 , 0 0 0}$ s to the multiple of $\mathbf{1 , 0 0 0}$ s before $8,700,5,000,6,000,7,000,8,000$ equal to four thousand.
Next, from 8,000 count on in 100s to $8,700,8,100,8,200,8,300,8,400$, $8,500,8,600,8,700$ equal to seven hundred.
Next, add the amounts counted on from largest to smallest, 4,000 and 700 and 200 and 50.
Finally, the missing number is 4,950 .

Column Addition

n

Bonds to 1,000

1) $1,000-?=375$

Word Problem

Rafique's missing number is the difference between one thousand and three hundred and seventy five.
What is his missing number?

Number Line

Strategy Applied

Number bonds to $\mathbf{1 , 0 0 0}$, means two or more numbers added together that make the number $\mathbf{1 , 0 0 0}$.
Use a ruler or number grid to help when counting on.
First, draw a number line and write three hundred and seventy five. at the start and one thousand at the end.
Then, from 1,000 count back in 100 s to the multiple of 100 s before 375 , $900,800,700,600,500,400$ equal to six hundred.
Next, from 400 count back in 10 s to the multiple of 10s before 375 , 390, 380 equal to twenty.
Then, from 380 count back in 1s back to $375,379,378,377,376,375$ equal to five.
Next, add the amounts counted on from largest to smallest, 600 and 20 and 5 equal to 625 .
Finally, the missing number is 625 .

Part Whole Model

Bar Model

Test Questions

1) $1,000-\ldots=375$
2) $1,000-\ldots=135$
3) $1,000-\ldots=453$
4) $1,000-\ldots=500$
5) $1,000-\ldots=520$
6) $1,000-\ldots=135$
7) $1,000-\ldots=458$
8) $1,000-\ldots=600$
9) $1,000-\ldots=720$
10) $1,000-\ldots=457$
11) $1,000-\ldots=235$
12) $1,000-\ldots=184$
13) $1,000-\ldots=506$
14) $1,000-\ldots=368$

Multiple Numbers

1) $8,000-3,000-1,000=$?

Word Problem

Eight thousand fans are seated at the Olympic Stadium. At 6pm three thousand fans leave the stadium. It's 7.30 pm and one thousand more fans leave. How many fans are left in the stadium?

Number Line

Strategy Applied

First, draw a number line and write a ? at the start and eight thousand at the end.
First, find and touch the number eight thousand on the number line.
Then, count backwards 3,000 less in multiples of $1,000 \mathrm{~s}, 7,000,6,000$, 5,000 equal to 5,000 .
Next, the number counted back to should be five thousand.
Then, count backwards 1,000 less in multiples of 1,000 s, 4,000 equal to 4,000 .
Next, the number counted back to should be four thousand.
Finally, 8,000 subtract 3,000 subtract 1,000 equals 4,000 .

Concrete Object

Part Whole Model

Bar Model

Test Questions

1) $8,000-3,000-1,000=$
2) $6,000-1,000-4,000=$
3) $4,000-3,000-300=$
4) $3,000-2,000-300=$
5) $7,000-5,000-100=$
6) $5,000-3,000-200=$ \qquad
7) $5,000-1,000-200=$ \qquad
8) $9,000-500-4,000=$
9) $4,000-2,100-300=$
10) $5,000-2,400-600=$ \qquad
11)__ $=1,700-900-60$
12)__ $=4,500-1,500-150$
13)__ $=3,900-900-70$
14)__ $=6,000-200-100$

Multiples of 6, 7, 9, 25, 100

In the number pattern below, find the next two missing terms.

1) $24,18,12, ?$?

Word Problem

David uses cubes to make the number pattern of twenty four, eighteen and twelve.
What are the next two missing terms?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule.
First, count backwards from twenty four to eighteen equalling six, the rule is -6 .
Then, count backwards from eighteen to twelve equalling six, the rule is -6 .
The rule is -6 (count back six) each number in the number pattern. Continue this number pattern to find the next two missing numbers. Next, find twelve on the number line and count back six less, equal to six.
Then, find six on the number line and count back six less, equal to zero. Finally, the next two missing terms in the number pattern are six and zero.

Metric Ruler

Test Questions

1) $24,18,12$, \qquad
2) $39,33,27$, \qquad
3) $51,45,39$, \qquad
4) $52,45,38$, \qquad
5) $64,57,50$, \qquad
6) $76,69,62$, \qquad
7) 101, 92, 83, \qquad
8) $210,201,192$, \qquad
9) 305, 296, 287, \qquad
10) $420,411,402$, \qquad
11) $725,700,675$, \qquad
12) $950,925,900$, \qquad
13) $1,200,1,100 \quad 1,000$ \qquad
14) $2,700,2,600 \quad 2,500$ \qquad

Decimals

1) $2.1-1.8=?$

Word Problem

In the Arctic, the temperature was two point one degrees above freezing on Saturday and one point eight degrees above freezing on Sunday.
What was the difference in temperatures?

Number Grid

0.0	0.1	0.2	$0.3<$	$\mathbf{0 . 4}$	$\mathbf{0 . 5}$	$\mathbf{0 . 6}$	$\mathbf{0 . 7}$	$\mathbf{0 . 8}$	$\mathbf{0 . 9}$
$\mathbf{1 . 0}$	$\mathbf{1} .1$	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
2.0	$\mathbf{1}$	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8

Strategy Applied

Partition 1.8 into $1.0+0.8$ and subtract each partitioned value from 2.1. First, find and touch the number two point one on a decimal number grid. Then, count upwards one square which is 1.0 less aloud in number order, whilst touching the numbers on the number grid, equal to one point one. Next, count backwards 0.8 less aloud in number order, whilst touching the numbers on the number grid, $1.0,0.9,0.8,0.7,0.6,0.5,0.4,0.3$ equal to zero point three.
Finally, the value of the missing number is zero point three.

Part Whole Model

Bar Model

Test Questions

1) $2.1-1.8=$
2) $2.5-1.3=$
3) $6.3-2.6=$ \qquad
4) $7.5-1.4=$ \qquad
5) $6.2-1.7=$ \qquad
6) $4.7-2.1=$ \qquad
7) $4.4-3.7=$ \qquad
8) $6.1-3.9=$
9) $8.1-1.9=$
10) $3.6-3.2=$
11) _ $=5.4-2.2$
12) __ $=6.7-3.3$
13) __ $=5.5-1.7$
14)__ $=7.2-1.9$

Column Subtraction

1) $3,657-2,465=?$

$$
\text { Step } 1
$$

Step 2
Step 3
Step 4
5
5

Strategy Applied

Step 1
In the 1 s column, 7 subtract 6 , equals 2 ones (2).
Write 2 in the total value of the 1 s column.

Step 2

In the $\mathbf{1 0} \mathbf{s}$ column, 5 subtract 6 , you cannot do as 5 is a lower value than 6 Exchange/Regroup 1 hundred into 10 tens from the 100s column to the 10s column.
Cross out the 6 tens and write 5 tens above, then write the exchanged/ regrouped 1 ten next to the 5 ones to make 15 ones.
In the 10s column, 15 subtract 6, equals 9 tens (90).
Write 9 in the total value of the 10 s column.

Step 3

In the 100 s column, 5 subtract 4 , equals 1 hundred (100).
Write 1 in the total value of the 100 s column.

Step 4

In the $\mathbf{1 , 0 0 0}$ s column, 3 subtract 2 , equals 1 thousand (1,000).
Write 1 in the total value of the $\mathbf{1 , 0 0 0}$ s column.
Total value is 1,192 .

Column Subtraction

1) 3,635

- 2,446 \qquad
Step 1
Step 2
Step 3
Step 3

			2
3	6	3	15
-2	4	4	6
			9

	5	2	
366	13	15	
2	4	4	6
	8	9	

	5	2	
3	6	13	15
-2	4	4	6
	1	8	9

	5	2	
3	6	13	15
-2	4	4	6
1,	1	8	9

Strategy Applied

Step 1
In the $1 \mathbf{s}$ column, 5 subtract 6 , you cannot do as 5 is a lower value than 6 . Exchange/Regroup 1 ten into 10 ones from the 10s column to the 1 s column.
Cross out the 3 tens and write 2 tens above, then write the exchanged/ regrouped 1 ten next to the 5 ones to make 15 ones.
In the 1 s column, 15 subtract 6 , equals 9 ones (9).
Write 9 in the total value of the 1 s column.
Step 2
In the $\mathbf{1 0}$ s column, 2 subtract 4 , you cannot do as 2 is a lower value than 4 Exchange/Regroup 1 hundred into 10 tens from the 100s column to the $\mathbf{1 0 s}$ column.
Cross out the 6 hundreds and write 5 tens above, then write the exchanged/regrouped 1 hundred next to the 2 tens to make 12 tens.
In the 10 s column, 12 subtract 4 , equals 8 tens (80).
Write 8 in the total value of the 10 s column.
Step 3
In the 100 s column, 5 subtract 4 , equals 1 hundred (100).
Write 1 in the total value of the 100 s column.
Step 4
In the $\mathbf{1 , 0 0 0}$ s column, 3 subtract 2 , equals 1 thousand $(1,000)$.
Write 1 in the total value of the $\mathbf{1 , 0 0 0}$ s column.
Total value is 1,549 .

Column Subtraction

1) $3,000-2,448=?$

Step 1	Step 2	Step 3	Step 4
2	29	299	299
$3^{10} 000$	$3{ }^{10}{ }^{10} 0$	$3{ }^{1} \theta^{10} \theta^{10}$	$3{ }^{1} \theta^{10} \theta^{10}$
-24 48	$\begin{array}{llll}2 & 4 & 4 & 8\end{array}$	- 2448	- 2448
			$\begin{array}{lllll}0 & 5 & 5 & 2\end{array}$

Strategy Applied

Step 1
In the $1 \mathbf{s}$ column, 0 subtract 8 , you cannot do as 0 is a lower value than 8 . From the 10s column, regroup 1 ten from the 0 tens, you cannot do this as the value of the tens is zero.
From the 100s column, regroup 1 hundred from the 0 tens, you cannot d this as the value of the hundreds is zero.
Instead, exchange/regroup 1 thousand into 10 hundreds from the 1,000 column to the $\mathbf{1 0 s}$ column.
Cross out the 3 thousands and write 2 thousands above, then write the exchanged/regrouped 1 thousand next to the 0 hundreds to make 10 hundreds.

Step 2

Exchange/Regroup 1 hundred into 10 tens from the 100s column to the 10 s column.
Cross out the 10 hundreds and write 9 hundreds above, then write the exchanged/regrouped 1 hundred next to the 0 tens to make 10 tens.

Step 3

Exchange/Regroup 1 ten into 10 ones from the 10s column to the 1 s column.
Cross out the 10 tens and write 9 tens above, then write the exchanged/ regrouped 1 ten next to the 0 ones to make 10 ones.

Step 4

In the 1 s column, 10 subtract 8 , equals 2 ones (2).
Write 2 in the total value of the 1 s column.
In the 10 s column, 9 subtract 4 , equals 5 tens (50).
Write 5 in the total value of the $\mathbf{1 0 s}$ column.
In the 100s column, 9 subtract 4, equals 5 hundreds (500).
Write 5 in the total value of the 100 s column.
In the $\mathbf{1 , 0 0 0}$ s column, 2 subtract 2 , equals 0 thousands (0). Write 0 in the total value of the 1,000 s column.
Total value is 552 .

Test Questions

1) 8257

- 1465
\qquad

2) 8975

- 5483

3) 6268

- 3394
-
-

$\begin{array}{r}3435 \\ -\quad 2246 \\ \hline\end{array}$

5) | 4 | 8 | 3 | |
| ---: | :--- | :--- | :--- |
| - | 1 | 2 | 4 |
6) 5713

- 2244
$\begin{array}{r}7 \quad 3 \quad 40 \\ -\quad 569 \\ \hline\end{array}$
$\begin{array}{r}8) \\ 3250 \\ - \\ \hline\end{array}$

9) $\begin{array}{r}8450 \\ - \\ \\ \hline\end{array}$
10) 3000
11) $4 \quad 0 \quad 0 \quad 0$
12) $7 \quad 0 \quad 0 \quad 0$

- 2938
$\begin{array}{r}4837 \\ \hline\end{array}$

Column Subtraction with Decimals

1) $79 \cdot 5+24 \cdot 6=$?

Word Problem

The perimeter of a farm is twenty four point six kilometres fewer than seventy nine point five kilometres.
What is the perimeter of the farm?

Step 1

	8		
7	9	.	15
-2	4	.	6
5	4	.	9

Step 2
Step 3

Strategy Applied

Step 1
In the 10ths column, 5 subtract 6 , you cannot do as 5 is a lower value than 6 .
Exchange/Regroup 1 one into 10 tenths from the 1 s column to the 10ths column.
Cross out the 9 ones and write 8 ones above, then write the exchanged/ regrouped 1 one next to the 5 tenths to make 15 tenths.

Step 2

In the 10ths column, 15 subtract 6 , equals 9 tenths (0.9).
Write 9 in the total value of the 10 ths column.

Step 3

In the 1 s column, 8 subtract 4 , equals 4 ones (4).
Write 4 in the total value of the 1 s column.
In the 10 s column, 7 subtract 2 , equals 5 tens (50).
Write 5 in the total value of the 10 s column.
Total value is 54.9 .

Part Whole Model

Bar Model

Test Questions
$\begin{array}{r}79.5 \\ \text { 1) } \quad 24.6 \\ \hline\end{array}$

2) | 4 | 5 | 7 | |
| ---: | ---: | ---: | ---: |
| - | 2 | 4 | . |
3) 69.3

- 24.4

4) 95.7
5) 67.9
6) $56 \quad 8$

- 3 . 4

7) $8 \quad 4 \quad 0$
8) 73.0
9) $7 \quad .0$
-65 . 3

- 56.9
- 44 . 8

10) 80 . 4
11) 60 . 6
12) 90 . 5

- 56 . 8
- 48.7
- 63 . 5

13) 30.0

9 . 4
14) 40 . 0

9 . 3
15) 20 . 0

- 8 . 3

Find the Missing Number

1) $8,700-1,000=?-2,000$

Word Problem

Two thousand fewer than the missing number is equal to the total value of the first number sentence.

Step 1

$$
\begin{array}{rrrr}
8, & 7 & 0 & 0 \\
-1, & 0 & 0 & 0 \\
\hline 7, & 7 & 0 & 0 \\
\hline
\end{array}
$$

Step 2

$$
\begin{aligned}
& \text { 7, } 7 \quad 0 \quad 0 \\
& +\begin{array}{llll}
2, & 0 & 0 & 0 \\
\hline 9, & 7 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Strategy Applied

Step 1
First, subtract the known number sentence, which is 8,700-1,000.
Then, partition eight thousand, seven hundred into its digit values.
$8,000+700+0+0$.
From the digit value of the 1,000 s place value, eight thousand, subtract the one thousand. $\quad 8,000-1,000=7,000$
The digit value of the $\mathbf{1 0 0} \mathbf{s}, \mathbf{1 0 s}$ and 1 s in 8,700 will remain the same as $700+0+0$.
Next, the new partitioned values are $7,000+700+0+0$ equal to 7,700 .
Finally, 8,700 subtract 1,000 is equal to 7,700 .

Step 2
Now we know $7,700=$? - 2,000
Use the inverse to calculate the missing number $7,700+2,000=$?
Then, partition seven thousand, seven hundred into its digit values.
$7,000+700+0+0$.

From the digit value of the $\mathbf{1 , 0 0 0}$ s place value, seven thousand add the two thousand. $\quad 7,000+2,000=9,000$
The digit value of the $\mathbf{1 0 0} \mathbf{s}, \mathbf{1 0}$ s and $\mathbf{1 s}$ in 7,700 will remain the same as $700+0+0$.
Next, the new partitioned values are $9,000+700+0+0$, equal to 9,700 . Finally, the value of the missing number is equal to 9,700 .

Test Questions

1) $8,700-1,000=\ldots-2,000$
2) $1,457+1,732-357=$
3) $5,950-\ldots-450=2,500$
4) $£ 3.42-£ 1.72=$
5) $450+\ldots-226=1,000$
6) 10 less than $729=$ \qquad
7) $5,623+1,000-100=$ \qquad
8) $£ 54.84-£ 27.63=$
9) $235-142=\ldots+50$
10) $36-6-6=$
11) $63-9-9=$ \qquad
12) $70-7-7=$ \qquad
13) $90-9-9=$ \qquad
14) $84-7-7=$ \qquad

Step Counting

$$
\text { 1) ? }=4 \times \mathrm{x} 12
$$

Word Problem

There are four fish in one jar.
How many fish are there in twelve jars?

Number Line

Strategy Applied

The twelve represents the value in each group, the multiplicand.
The four represents how many groups there are, the multiplier.
The ? represents the total value of four groups of twelve, the product. For step counting each lot of twelve is added on four times up to ?, expressing the number value as it is counted on.

First, find and touch the number zero on a number line.
Then, count forwards twelve more aloud in number order, whilst touching the numbers on the number line, on to the number twelve. Next, count forwards twelve more aloud in number order, whilst touching the numbers on the number line, on to the number twenty four. Then, count forwards twelve more aloud in number order, whilst touching the numbers on the number line, on to the number thirty six. Next, count forwards twelve more aloud in number order, whilst touching the numbers on the number line, on to the number forty eight. Finally, twelve lots of four equals forty eight.

Step Counting

$12 \rightarrow 24 \rightarrow 36 \rightarrow 48$

Bar Model

12	12	12	12	
48				

Test Questions

1) $\quad=4 \times 12$
2) $\ldots=12 \times 3$
3) $\ldots=4 \times 9$
4)
5) $\ldots=7 \times 11$
6)

$\left.{ }^{7}\right) \ldots=12 \times 8$
8) $\ldots=6 \times 6$
9) $\ldots=9 \times 3$
10)__ $=8 \times 6$
11)__ $=9 \times 9$
12)__ $=4 \times 11$
13)__ $=8 \times 3$
14)__ $=7 \times 6$

Multiple Numbers

1) $2 x$
5 x $4=?$

Word Problem

Two pencils are placed in each pot.
There are five pots in one row.
What is the total number of pencils in four rows?

Step 1

Step 2
$10 \rightarrow 20 \rightarrow 30 \rightarrow 40$

Strategy Applied

The three numbers can be multiplied in any order.
Out of the three numbers, multiply two of them together first and the product (answer) will then be multiplied by the remaining number.

Step 1
Use step counting to multiply two by five, equal to ten.

Step 2
Use step counting to multiply ten by four, equal to forty.
The total value of the product is forty.

Test Questions

1) $2 \mathrm{x} 5 \mathrm{x} 4=$ \qquad
2) $5 \mathrm{x} 3 \mathrm{x} 5=$ \qquad
3) $2 \mathrm{x} 3 \mathrm{x} 5=$ \qquad
4) 5 x 6 x $4=$ \qquad
5) $2 \times 3 \times 8=$
6) $7 \times 7 \times 3=$ \qquad
7) 2 x 3 x $7=$ \qquad
8) $8 \times 3 \times 4=$ \qquad
9) $3 \times 4 \times 6=$ \qquad
10) $3 \times 4 \times 7=$ \qquad
11)__ $=20 \times 3 \times 7$
12)__ $=80 \times 3 \times 4$
13)__ $=30 \times 4 \times 60$
14)__ $=30 \times 40 \times 70$

x 10 and x 100

1) $26 \times 100=$?

Word Problem

A race from London to Brighton is one hundred miles long.
Only twenty six of the participants complete the race.
The collective number of miles ridden by them all is how much?

Place Value Grid

Thousands $\underline{1,000 \mathrm{~s}}$	Hundreds $\underline{100 \mathrm{~s}}$	Tens $\underline{10 \mathrm{~s}}$	Ones $\underline{1 \mathrm{~s}}$
		2	6
2	6	0	0

Strategy Applied

Multiplying any number by one hundred, means that number will become one hundred times as big.
Each digit in the number will move two column place values to the left. First, write the number twenty six on a place value grid, in the 1 s and 10s column.
Then, in the 10s column multiply the digit two by one hundred by moving it two column place values to the left and write two in the 1,000 s column.
Next, in the 1 s column multiply the digit six by one hundred by moving it two column place values to the left and write six in the 100s column. Then, the 10 s and 1 s column cannot be left blank as they still have a value, write zero, a place holder in both columns.
Finally, 26 multiplied by 100 is equal to 2,600 .

Test Questions

1) $26 \times 100=$ \qquad
2) $39 \mathrm{x} 10=$ \qquad
3) $41 \times 100=$ \qquad
4) 58 x $10=$ \qquad
5) $63 \times 100=$
6) $72 \mathrm{x} 10=$ \qquad
7) $80 \times 100=$ \qquad
8) $94 \times 10=$ \qquad
9) $75 \mathrm{x} 100=$ \qquad
10) $53 \mathrm{x} 10=$ \qquad
11) $91 \times 100=$ \qquad
12) $82 \mathrm{x} 10=$ \qquad
13) $64 \times 100=$
14) $55 \mathrm{x} \quad 10=$ \qquad

Short Multiplication

1) $2,135 \mathrm{x} 4=$?

Word Problem

Over four years, two thousand, one hundred and thirty five pounds is saved each year.
How much is saved in total?

Step $1 \quad \underline{\text { Step } 2} \quad \underline{\text { Step 3 }}$

Strategy Applied

Step 1
In the $\mathbf{1 s}$ column, multiply 5 by 4 , equals 20 ones $(20+0)$.
Write 0 in the total value of the 1 s column.
Exchange/Regroup the 20 ones into 2 tens from the $1 \mathbf{s}$ column to the 10s column and write 2 tens below the total value line of the 10 s column.

Step 2

In the 10s column, multiply (30) 3 by 4 , equals 12 tens $(100+20)$.
Add the exchanged/regrouped 2 tens (20) below, equals 14 tens ($100+40$).
Write 4 in the total value of the $\mathbf{1 0 s}$ column.
Exchange/Regroup the 10 tens into 1 hundred from the 10s column to the 100s column and write 1 below the total value line of the 100 s column.

Step 3
In the $\mathbf{1 0 0}$ s column, multiply (100) 1 by 4 , equals 4 hundreds (400). Add the exchanged/regrouped 1 hundred (100) below, equals 5 hundreds (500).
Write 5 in the total value of the 100 s column.

Step 4

In the 1,000 s column, multiply $(2,000) 2$ by 4 , equals 8 hundreds (800). Write 8 in the total value of the 1,000 s column.
Total value is 8,540 .

Bar Model

2,135	2,135	2,135	2,135
8,540			

Test Questions

Short Multiplication with Decimals

1) $21 \cdot 35 \times 3=$?

Word Problem

One bag of cement weighs twenty one point three five kilograms.
What is the weight of three bags?

Strategy Applied

Step 1
In the 100ths column, multiply 5 by 3 , equals 15 hundredths ($0.10+0.05$).
Write 5 in the total value of the 100ths column.
Exchange/Regroup the 10 hundredths into 1 tenth from the 10ths column to the 10 ths column and write 1 tenth below the total value line of the 10 ths column.

Step 2

In the 10 ths column, multiply 3 by 3 , equals 9 ones (0.09).
Add the exchanged/regrouped 1 tenth below, equals 10 tenths $(1.0+0.0)$.
Write 0 in the total value of the 10 ths column.
Exchange/Regroup the 10 tenths into 1 one from the 10 ths column to the 1 s column and write 1 one below the total value line of the 1 s column

Step 3

In the 1 s column, multiply 1 by 3 , equals 3 ones (3).
Add the exchanged/regrouped 1 one below, equals 4 ones (4).
Write 4 in the total value of the 1 s column.
In the 10 s column, multiply 2 by 3 , equals 6 tens (6).
Write 6 in the total value of the 10 s column.
Total value is 64.05 .

Part Whole Model

Bar Model

21.35	21.35	21.35
$? 64.05$		

Test Questions

Find the Missing Number

1) $34 \times 5=\ldots-30$

Word Problem

Five packets of thirty four sunflower seeds are planted in Garden A.
Garden B plants the same amount of seeds.

Step 1

$$
\begin{array}{rrrr}
3 & 0 & \mathrm{x} & 5=150 \\
& 4 & \mathrm{x} & 5 \\
& 200 \\
1 & 70
\end{array}+
$$

Strategy Applied

Step 1
Calculate the known number sentence 34×5, using partitioning.
There are five lots of thirty fours,
Partition the number thirty four into its digit values $30+4$, multiplicand Multiply each digit value by five, the multiplier.
First, multiply thirty by five, equal to one hundred and fifty.
Then, multiply four by five, equal to twenty.
Finally, add together one hundred and fifty and twenty, equal to one hundred and seventy.

Step 2

$$
\begin{array}{lllllllll}
1 & 0 & 0 & + & 0 & =1 & 0 & 0 \\
& 7 & 0 & +3 & 0 & =1 & 0 & 0 \\
& & 0 & + \\
& & 0 & 0 & 0
\end{array}+
$$

Step 2
New known fact $170=$? -30 or ? - $30=170$
Use the inverse of subtraction, which is addition and add together,
$170+30=$?
Partition one hundred and seventy into its digit values $100+70+0$.
As only thirty is to be added, the digit value of the $\mathbf{1 0 s}$ column will change in the number 170 , which is 70 .
70 add 30 is equal to 100 .
The digit value of the $\mathbf{1 0 0 s}$ and $\mathbf{1 0 s}$ in 170 will remain the same as $100+0$.
Next, the new partitioned values are $100+100+0$.
Finally, $100+70+0$ add 30 is equal to 200 .

Test Questions

1) $34 \times 5=$ \qquad - 30
2) $9 \times 4 \times 2=$
3) $3 \times 8=\ldots \times 4$
4) $3 \times 8=\ldots \times 4$
5) $7 \times 3 \times 0=$
6) 4×8 x $8=$ \qquad
7) $4 \times 6 \times 10=$
8) $25 \times 3=\ldots \times 5$
9) $4 \times 3 \times 6=$
10) $8 \times 3 \times 0=$
11) $3 \times 7 \times 7=$
12) $6 \times 8=\ldots \times 4$
13) $24 \times 5=\ldots \times 10$
14) $345 \mathrm{x} 8=3450$ -

Inverse of Division

1) $36 \div ?=12$

Word Problem

A number of children share thirty six pounds equally between them, they each receive twelve pounds.
How many children are there?

Metric Ruler

Strategy Applied

The thirty six represents the total value, the dividend.
The missing number represents how many groups of thirty six, the divisor.
The twelve represents the value in each equal group, the quotient. Use the inverse of division is multiplication, 12×3 Apply step counting to calculate the missing number, the divisor, by counting on lots of twelves on to thirty six.

First, find and touch the number zero on a number line.
Then, count forwards twelve more aloud in number order, whilst touching the numbers on the number line, on to the number twelve. Then, count forwards twelve more aloud in number order, whilst touching the numbers on the number line, on to the number twenty four. Then, count forwards twelve more aloud in number order, whilst touching the numbers on the number line, on to the number thirty six. Finally, three groups of twelve equals thirty six.

Part Whole Model

Bar Model

Test Questions

1) $36 \div \ldots=12$
2) $27 \div \ldots=3$
3) $54 \div \ldots=6$
4) $46 \div{ }^{-}=1$
5) $28 \div \ldots=7$
6) $\ldots \quad \div 98=1$
7) $\ldots \div 6=5$
8) $\ldots \quad \div 12=8$
9) \qquad $\div 11=10$
10) $\div 56=1$
11) $24 \div 12=$ \qquad
12) $63 \div 9=$
13) $72 \div 6=$ \qquad
14) $44 \div 4=$ \qquad

$\div 10$ and $\div 100$

1) $361 \div 100=$?

Word Problem

A landmark building is three hundred and sixty one metres tall.
Miniature replicas sold in the shops are one hundred times as small. How tall is a replica?

Place Value Grid

$\underline{1000 \mathrm{~s}}$	$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 \mathrm{~s}}$	\cdot	$\underline{10 t h s}$	$\underline{100 t h s}$
	3	6	1	\cdot		
			3	\cdot	6	1

Strategy Applied

Dividing any number by one hundred, means that number will become one hundred times as small.
Each digit in the number moves two column place values to the right. First, write the number three hundred and sixty one on a Place Value Grid, in the $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s columns.
Then, in the $\mathbf{1 0 0}$ s column divide the digit three by one hundred, moving it two column place values to the right and write three in the 1 s column. Next, in the 10 s column divide the digit six by one hundred, moving it two column place values to the right and write six in the 10ths column. Then, in the 1 s column divide the digit one by one hundred, moving it two column place values to the right and write one in the 100ths columr Finally, three hundred and sixty one divided by one hundred is equal to three point six one.

Test Questions

1) $361 \div 100=$ \qquad
2) $329 \div 10=$ \qquad
3) $338 \div 100=$ \qquad
4) $482 \div 10=$ \qquad
5) $123 \div 100=$
6) $724 \div 10=$ \qquad
7) $135 \div 100=$ \qquad
8) $166 \div 10=$ \qquad
9) $247 \div 100=$ \qquad
10) $9,208 \div 10=$ \qquad
11) $4,159 \div 100=$ \qquad
12) $6,107 \div 10=$ \qquad
13) $5,203 \div 100=$ \qquad
14) $3,109 \div 10=$ \qquad

Short Division

1) $7,135 \div 2=?$

Word Problem

Two cargo ships should have an identical number of crates of apple juice. Altogether they both hold seven thousand, one hundred and thirty five crates. How many crates does each ship hold?
Step 1
Step 2
Step 3
3
$2 \longdiv { 7 1 1 \quad 3 \quad 5 }$
$3 \quad 5$
$2 \longdiv { 7 1 1 \quad 1 3 \quad 5 }$
$3 \quad 5 \quad 6$
$2 \longdiv { 7 } 1 1 \quad 1 3 \quad 1 5$

Step 4

$$
\begin{array}{rrrrrr}
3 & 5 & 6 & 7 \\
7 & 11 & 13 & 15
\end{array} \quad 2 \begin{array}{|cccc}
3 & 5 & 6 & 7 \\
\hline 7 & 11 & 13 & 15
\end{array}
$$

Strategy Applied

Step 1

How many lots of 2 divide exactly in to 7 ? The answer is $3(2 \times 3=6)$, with a remainder of 1 .
Write 3 on the line above the 7 .
Cross out the 7 and regroup the remainder 1 to the next digit place value.

Step 2

How many lots of 2 divide exactly in to 11 ? The answer is $5(2 \times 5=10)$, with a remainder of 1 .
Write 5 on the line above the 11 .
Regroup the remainder 1 to the next digit place value, 3, to become 13 .

Step 3

How many lots of 2 divide exactly in to 13 ? The answer is $6(2 \times 6=12)$, with a remainder of 1 .
Write 6 on the line above the 13 .
Regroup the remainder 1 to the next digit place value, 5, to become 15.

Step 4

How many lots of 2 divide exactly in to 15 ? The answer is $7(2 \times 7=14)$, with a remainder of 1 .
Write 7 on the line above the 15 .

Step 5

There are no more digits in the number to be divided by 2 .
The remainder of 1 , is written as r 1 on the line above.
Total value is $3,567 \mathrm{r} 1$.

Test Questions

1)

$$
4 \longdiv { 9 1 3 }
$$

2)

$2 \longdiv { 7 1 3 5 }$
3)
$3 \longdiv { 8 1 3 \quad 7 }$
4)

$$
5 \longdiv { 6 2 6 }
$$

5)

$4 \longdiv { 4 2 7 9 }$
6)
$3 \longdiv { 8 \quad 2 \quad 5 \quad 7 }$
7)
$6 \longdiv { 8 4 5 }$
8)
$5 \longdiv { 9 2 6 0 }$
9)
$4 \longdiv { 7 \quad 3 \quad 4 \quad 0 }$
10)
$7 \longdiv { 6 4 0 }$
11)
$6 \longdiv { 4 2 0 6 }$
12)
$5 \longdiv { 2 3 \quad 0 \quad 4 }$
13)
$8 \longdiv { 2 6 8 }$
14)
$7 \longdiv { 4 \quad 5 \quad 2 \quad 7 }$
15)
$6 \longdiv { 3 9 3 8 }$

Short Division with Decimals

1) $11.39 \div 2=?$

Word Problem

Eleven point three nine pounds is to be shared equally between two kids. Can the amount of money be shared equally?

Step 1
0
$2 \longdiv { 4 1 1 } \cdot$

Step 4
$\begin{array}{rrrrrr}0 & 5 & 6 \quad 9 \\ 2 & { }^{1} 11 & . & 13 & 19\end{array}$
$\begin{array}{rrrrr}0 & 5 & & \\ 2 & \begin{array}{rrrrr}11 & \cdot 13 & 9\end{array}\end{array}$

Step 3
Step 2

$$
\text { Step } 5
$$

| 0 | 5 | 6 | 9 |
| :---: | :---: | :---: | :---: |${ }^{1} 11$

Strategy Applied

Step 1
How many lots of 2 divide exactly in to 1 ? The answer is $0(2 \times 0=0)$, with remainder 1.
Write 0 on the line above the 1 .
Cross out the 1 and regroup the remainder 1 to the next digit place value, 1 , to become 11 .

Step 2
How many lots of 2 divide exactly in to 11 ? The answer is $5(2 \times 5=10)$, with remainder 1 .
Write 5 on the line above the 11 and write a decimal point next to it.
Regroup the remainder 1 to the next digit place value, 3, to become 13.

Step 3

How many lots of 2 divide exactly in to 13 ? The answer is $6(2 \times 6=12)$, with remainder 1.
Write 6 on the line above the 13 .
Regroup the remainder 1 to the next digit place value, 9 , to become 19 .

Step 4

How many lots of 2 divide exactly in to 19? The answer is $9(2 \times 9=18)$, with remainder 1.
Write 9 on the line above the 19 .

Step 5
There are no more digits in the number to be divided by 2 .
The remainder 1, is written as r 1 on the line above.
Total value is 5.68 r 1 .

Test Questions

1)

3)

$$
3 \longdiv { 2 6 \quad 5 \quad 7 }
$$

5)

$$
4 \longdiv { 3 5 . 4 0 }
$$

7)

$$
5 \longdiv { 3 0 0 . 0 4 }
$$

9)

2)

4)
$4 \longdiv { 2 8 \quad 7 \quad 9 }$
6)

$$
5 \longdiv { 2 0 \quad . 6 0 }
$$

8)

10)

$$
8 \longdiv { 1 } 6 6 \quad . \quad 9 \quad 7
$$

Find the Missing Number

1) $40 \div 5=$? $\mathbf{x} 2$

Word Problem

A basket contains forty strawberries. Noel has five times as less.
Kavalli has the same amount as him, split into two tubs.
How many strawberries in one tub?

Step 1 $5 \rightarrow 10 \rightarrow 15 \rightarrow 20 \rightarrow 25 \rightarrow 30 \rightarrow 35 \rightarrow 40$

Strategy Applied

Step 1
Out of the two number sentences, calculate the number sentence with all the known numbers first, $40 \div 5$.
Apply step counting, the inverse of division, to calculate how many lots of five is equal to forty.
Count forwards saying the number names that are after the number. First, find and touch the number five on a number line.
Then, count forwards aloud in number order, whilst touching the numbers on the number line, five more equal to six.
Next, keep repeating the action of counting on in lots of fives up to the number forty on a number line.
Finally, eight lots of five is equal to forty.

Step 2

Step 2
If $40 \div 5=8$, then $8=$? $\times 2$, as they are the same value. Use step counting to calculate the missing number, $2 \times ?=8$, by counting on in lots of twos up to eight.
Count forwards saying the number names that are after the number. First, find and touch the number two on a number line.
Then, count forwards aloud in number order, whilst touching the numbers on the number line, two more equal to four.
Next, keep repeating the action of counting on in lots of twos up to the number eight on a number line.
Finally, four lots of twos is equal to eight, the missing number is four.

Test Questions

1) $40 \div 5=$ x 2
2) $6 \div 10=$ \qquad
3) $60 \div 5=\ldots \mathrm{x} 6$
4) $56 \div \ldots=8$
5) $7 \div 100=$
6) $72 \div \ldots=9$
7) $26 \div 100=$
8) $78 \div 3=$
9) $20 \div 5 \div 1=$
10) $84 \div 6=$
11) $33 \div 3 \div 1=$
12) $96 \div 12=$ \qquad
13) $3 \div 10=$
14) $99 \div 11=$ \qquad

Add and Subtract Integers

1) $-3+8=$?

Word Problem

The temperature on the last day of September in Scotland was minus three degrees. Yet England was eight degrees warmer on the same day. What was the temperature in England?

Strategy Applied

Positive numbers are counted on forwards on a horizontal number line and upwards on a vertical number line.
Negative numbers are counted on backwards on a horizontal number line and downwards on a vertical number line.
To represent positive and negative numbers on a number line, then mark zero half way (mid-point) on the line.
On a horizontal number line, all the numbers (integers) to the right of the zero will be positive.
On a horizontal number line, all the numbers (integers) to the left of the zero will be negative.

Step 1

Draw a horizontal number line and half way mark it with a zero.
From the zero, count backwards in multiples of 1s to minus three.
Mark the minus three on the number line.
Step 2
First, find and touch the number minus three on the number line.
Then, count forwards eight more in multiples of 1 s aloud in number order whilst touching the numbers on the number line, $-2,-1,0,1,2,3$, 4,5 equal to five.

Test Questions

1) $-3+8=$
2) $-5+6=$ \qquad
3) $-7+10=$ \qquad
4) $-2+14=$
5) $-15+7=$ \qquad
6) $-23+9=$ \qquad
7) $-11+4=$ \qquad
8) $+1-13=$ \qquad
9) $+5-18=$ \qquad
10) $+10-25=$ \qquad
11) $+15-8=$
12) $+20-12=$
13) $+25-16=$
14) $+30-19=$

To Nearest 10

1) $3,257=?$

Place Value Grid

1000 s	$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 s}$	\cdot	$\underline{10 t h s}$	100ths
3	2	5	7	\cdot		
3	2	6	0	\cdot		

Strategy Applied

When rounding to the nearest 10s place value, the following will occur. 1. The 10s digit value will remain the same (round down), if the digit in the 1 s column is a $0,1,2,3,4$ (4 or less).
2. The 10s digit value will increase by ten (round up), if the digit in the 1 s column is a $5,6,7,8,9$ (5 or more).
3. The value of any digits in the column place values to the right of the 10s column change to a place holder, 0 .
4. The value of any digits in the column place values to the left of the 10s column usually remain the same. (If the 10s digit value increases to 100 then the $\mathbf{1 0}$ s digit becomes a place holder, $\mathbf{0}$ and the $\mathbf{1 0 0}$ s digit increases by 100 more)

Step 1

First, write the number 3,257 on a Place Value Grid in the correct column place values of the $1 \mathrm{~s}, \mathbf{1 0 s}, 100 \mathrm{~s}$ and $1,000 \mathrm{~s}$.

Step 2

Then, say the digit in the $\mathbf{1 s}$ column which is 7 and as it is $\mathbf{5}$ or more the 10s digit value will increase by ten (round up).

Step 3
Next, the digit value of the 5 tens (50), add 10 to make 6 tens (60).
In the 10s column write the digit 6 underneath the digit 5 .

Step 4

Then, the $\mathbf{1 s}$ column digit value changes to a place holder, $\mathbf{0}$.
In the $1 \mathbf{s}$ column write the digit 0 underneath the digit 7.

Step 5

Next, the $\mathbf{1 , 0 0 0}$ s and 100s column digit values remain the same as 3 and 2 . In the $\mathbf{1 , 0 0 0}$ s and $\mathbf{1 0 0}$ s columns write the same digits 3 and 2 underneath.

Step 6
Finally, 3,257 rounded to the nearest 10 is 3,260 .

Test Questions

1) $3,257=$ \qquad
2) $10.27=$ \qquad
3) $2,138=$
4) $87.67=$ \qquad
5) $7,656=$
6) $61.11=$ \qquad
7) $7,222=$
8) $32.84=$
9) $4,395=$
10) $21.92=$
11) $3,203=$ \qquad 13) $874.51=$ \qquad
12) $43.68=$ \qquad
13) $1,254.56=$ \qquad

To Nearest 100

1) $5,479=?$

Place Value Grid

1000 s	$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 s}$	\cdot	10ths	100ths
5	4	7	9	\cdot		
5	5	0	0	\cdot		

Strategy Applied

When rounding to the nearest 100s place value, the following will occur. 1. The 100s digit value will remain the same (round down), if the digit in the 10 s column is a $0,1,2,3,4$ (4 or less).
2. The 100s digit value will increase by one hundred (round up), if the digit in the $\mathbf{1 0}$ s column is a $5,6,7,8,9$ (5 or more).
3. The value of any digits in the column place values to the right of the 100 s column change to a place holder, $\mathbf{0}$.
4. The value of any digits in the column place values to the left of the 100s column usually remain the same. (If the 100s digit value increases to 1,000 then the $\mathbf{1 0 0}$ s digit becomes a place holder, $\mathbf{0}$ and the $\mathbf{1 , 0 0 0}$ s digit increases by 1,000 more)

Step 1

First, write the number 5,479 on a Place Value Grid in the correct column place values of the $\mathbf{1 s}, \mathbf{1 0 s}, 100 \mathrm{~s}$ and $1,000 \mathrm{~s}$.

Step 2

Then, say the digit in the $\mathbf{1 0}$ s column which is 7 and as it is $\mathbf{5}$ or more the 100s digit value will increase by one hundred (round up).

Step 3
Next, the digit value of the 4 hundreds (400), add 100 to make
5 hundreds (500).
In the $\mathbf{1 0 0 s}$ column write the digit 5 underneath the digit 4.

Step 4

Then, the 10 s and 1 s column digit values change to a place holder, $\mathbf{0}$.
In the $\mathbf{1 0 s}$ and 1 s columns write the digit 0 underneath the digit 7 and 9 .

Step 5

Next, the $\mathbf{1 , 0 0 0}$ s column digit value remains the same as 5 .
In the $1,000 \mathrm{~s}$ column write the same digit 3 underneath.
Step 6
Finally, 5,479 rounded to the nearest 100 is 5,500 .

Test Questions

1) $5,479=$ \qquad
2) $210.27=$ \qquad
3) $927=$ \qquad
4) $387.67=$ \qquad
5) $9,878=$
6) $561.11=$ \qquad
7) $5,888=$
8) $632.84=$ \qquad
9) $2,173=$
10) $721.92=$
11) $1,081=$
12) $9,874.51=$ \qquad
13) $143.68=$ \qquad
14) $9,362.04=$ \qquad

To Nearest 1,000

1) $4,368 \cdot 79=?$

Place Value Grid

1000 s	$\underline{100 \mathrm{~s}}$	$\underline{10 s}$	$\underline{1 s}$	\cdot	$\underline{10 t h s}$	$\underline{100 t h s}$
4	3	6	8	\cdot	7	9
4	0	0	0	\cdot	0	0

Strategy Applied

When rounding to the nearest $\mathbf{1 , 0 0 0}$ s place value, the following will occur.

1. The 1,000s digit value will remain the same (round down), if the digit in the 100s column is a $0,1,2,3,4$ (4 or less).
2. The 1,000 s digit value will increase by one thousand (round up), if the digit in the $\mathbf{1 0 0}$ s column is a $5,6,7,8,9$ (5 or more).
3. The value of any digits in the column place values to the right of the 1,000 s column change to a place holder, 0 .
4. The value of any digits in the column place values to the left of the $1,000 \mathrm{~s}$ column usually remain the same. (If the $\mathbf{1 , 0 0 0}$ digit value increases to 10,000 then the $\mathbf{1 , 0 0 0}$ s digit becomes a place holder, $\mathbf{0}$ and the $\mathbf{1 0 , 0 0 0}$ s digit increases by 10,000 more)

Step 1

First, write the number 4368.79 on a Place Value Grid in the correct column place values of the 100 ths, 10 ths $, 1 \mathrm{~s}, 10 \mathrm{~s}, 100 \mathrm{~s}$ and $1,000 \mathrm{~s}$.

Step 2

Then, say the digit in the $\mathbf{1 0 0}$ s column which is 4 and as it is $\mathbf{4}$ or less the $\mathbf{1 , 0 0 0}$ s digit value will remain the same (round down).

Step 3
Next, the digit value of the 4 thousands $(4,000)$ remains the same.
In the $\mathbf{1 , 0 0 0}$ s column write the digit 4 underneath the digit 4.

Step 4

Then, the $\mathbf{1 0 0}$ s, 10s, $\mathbf{1 s}, 10$ ths and 100 ths column digit values change to a place holder, 0 .
In the $\mathbf{1 0 0} \mathbf{s}, \mathbf{1 0 s}, \mathbf{1 s}, 10$ ths and 100 ths columns write the digit 0 underneath the digits $3,6,8,7$ and 9 .

Step 5

Next, the $\mathbf{1 , 0 0 0}$ s column digit value remains the same as 4 .
In the $\mathbf{1 , 0 0 0}$ s column write the same digits 4 underneath.

Step 6
Finally, 4368.79 rounded to the nearest $\mathbf{1 , 0 0 0}$ is 4,000 .

Test Questions

1) $4,368.79=$
2) $7,210.27=$ \qquad
3) $1,029.27=$
4) $4,387.67=$ \qquad
5) $8,798.78=$
6) $9,561.11=$
7) $6,158.88=$ \qquad 11) $1,632.84=$
8) $3,221.73=$ \qquad 12) $5,721.92=$
9) $2,110.81=$ \qquad 13) $1,254.56=$ \qquad
10) $8,143.68=$
11) $9,999.99=$ \qquad

Fraction of a Quantity

1) $\frac{7}{8}$ of $16=?$

Word Problem

A sixteen slice extra large pizza was shared between the eight Scouts. Only seven Scouts ate, eating some slices.
How many slices have been eaten?

Concrete Object

Quantity

Strategy Applied

A fraction is part of a whole or part of $\mathbf{1}$ and an eighth is 1 of 8 equal groups.
16 is the quantity shared equally between the total number of equal groups.
8 is the denominator, represents the total number of equal groups. 7 is the numerator, represents seven of the equal groups.

First, pick up sixteen objects and place them together. Now count aloud from 1 to 16 ,to check there are only sixteen objects.
Then, share the sixteen objects one at a time equally between the eight groups, until exactly the same quantity of objects are in each of the groups.
Next, count how many objects there are altogether in seven groups, there should be fourteen objects; one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen.
Finally, the missing number is fourteen objects, which is the total amount in seven of the groups.

Bar Model

16							
2	2	2	2	2	2	2	2

Test Questions

1) $\frac{7}{8}$ of $16=$
2) $\frac{2}{5}$ of $25=$
3) $\frac{2}{3}$ of $15=$
4) $\frac{1}{3}$ of $27=$ \qquad
5) $\frac{3}{8}$ of $40=$
6) $\frac{2}{5}$ of $30=$
7) $\frac{2}{3}$ of $30=$
8) $\frac{1}{3}$ of $24=$ \qquad
9) $\frac{4}{5}$ of $10=$
10) $\frac{1}{2}$ of $52=$ \qquad

Add Fractions

1) $\frac{4}{6}+\frac{3}{6}=\frac{?}{?}$

Word Problem

Popsy ate four sixths of a tin of cat food, whilst Jiggy ate three sixths. How many tins of cat food have they eaten?

Fraction Tiles

1	1	1	1							
6	6	6	6	$+$	1	1	1			
:---	:---	:---								
6	6	6	$=$	1	1	1	1	1	1	1
:---	:---	:---	:---	:---	:---	:---				
6	6	6	6	6	6	6				

Step 1

$$
\text { Step } 2
$$

$\frac{4}{6}+\frac{3}{6}=\frac{4+3}{6}=\frac{7}{6}$
Step 3

1	1	1	1	1	1	1							
6	6	6	6	6	6	6	$=$	1	1	1	1	1	1
:---	:---	:---	:---	:---	:---								
6	6	6	6	6	6	$+$	1						
:---:													
6													

Strategy Applied

Step 1
Add two fractions with the same denominators, four-sixths and three-sixths.

The 4 represents the numerator.
The 6 represents the denominator.
$\frac{4}{6}$

The 3 represents the numerator. The 6 represents the denominator.

Step 2
Add the numerators $4+3$ equalling 7 .
The denominator remains the same as 6 .
The resulting fraction is seven-sixths. (an improper fraction)

Step 3

Convert the improper fraction of seven-sixths into a mixed fraction.
A mixed fraction consists of a whole number and a proper fraction. Out of seven-sixths a fraction wall shows six-sixths is equivalent to one whole and with a remainder of one-sixth .

$$
1 \frac{1}{6}
$$

Test Questions

1) $\frac{4}{6}+\frac{3}{6}=-$
2) $\frac{4}{5}+\frac{2}{5}=$
3) $\frac{4}{9}+\frac{7}{9}=$
4) $\frac{4}{7}+\frac{5}{7}=$
5) $\frac{6}{4}+\frac{2}{4}=$
6) $\frac{7}{8}+\frac{3}{8}=-$
7) $\frac{8}{9}+\frac{8}{9}=$
8) $\frac{6}{7}+\frac{6}{7}=$
9) $\frac{4}{5}+\frac{3}{5}=$

$$
\text { 10) } \frac{2}{3}+\frac{2}{3}=
$$

Subtract Fractions

1) $\frac{9}{9}-\frac{6}{9}=\frac{?}{?}$

Word Problem

Mum and dad enter a pie eating competition at the summer fete.
Mum ate nine-ninths of a pie and dad ate six-ninths less.
How much pie was eaten by dad?

Fraction Tiles

1	1	1	1	1	1	1	1	1
9	9	9	9	9	9	9	9	9

Step 1

1	1	1	1	1	1				
9	9	9	9	9	9	$=$	1	1	1
:---	:---	:---							
9	9	9							

Step 2
$\frac{9}{9}-\frac{6}{9}=\quad \frac{9-6}{9}=\frac{3}{9}$
Step 3
Common Factors of

$$
\begin{aligned}
& 3=1,3 \\
& 9=1,3,9
\end{aligned}
$$

$$
\begin{aligned}
& 3 \div 3=1 \\
& 9 \div 3=\frac{1}{3}
\end{aligned}
$$

Strategy Applied

Step 1
Subtract two fractions with the same denominators and different numerators of nine-ninths and six-ninths.

The 9 represents the numerator.
The 9 represents the denominator.
$\frac{9}{9}$

The 6 represents the numerator. The 9 represents the denominator.

$$
\frac{6}{9}
$$

Step 2
Subtract the numerators 9-6 equalling 3 .
The denominator remains the same as 9 .
The resulting fraction is three-ninths. (Simplify if possible)

Step 3

Simplify a fraction by reducing the numerator and denominator to their lowest terms by dividing them both by their Highest Common Factor. The Highest Common Factor (HCF) of 3 and 9 is $\mathbf{3}$.
The value of the simplified fraction of $\frac{1}{3}$.

Test Questions

1) $\frac{9}{9}-\frac{6}{9}=$
2) $\frac{2}{3}-\frac{1}{3}=$ \qquad
3) $\frac{3}{8}-\frac{1}{8}=$
4) $\frac{1}{2}-\frac{1}{2}=$
5) $\frac{5}{6}-\frac{3}{6}=$
6) $\frac{8}{8}-\frac{4}{8}=$
7) $\frac{5}{6}-\frac{1}{6}=$
8) $\frac{3}{3}-\frac{1}{3}=$
9) $\frac{3}{4}-\frac{1}{4}=$
10) $\frac{7}{9}-\frac{1}{9}=$

Find the Missing Number

1) $\frac{3}{8}+\frac{?}{?}=1$

Word Problem

A litre bottle is three eighths full of water.
How much water is required to fill the bottle?

Number Line

Fraction Tiles

1	1	1											
8	8	8	$+$	1	1	1	1	1					
:---	:---	:---	:---	:---									
8	8	8	8	8	$=$	1	1	1	1	1	1	1	1
:---	:---	:---	:---	:---	:---	:---	:---						
8	8	8	8	8	8	8	8						

Strategy Applied

Step 1
The 3 represents the numerator. The 8 represents the denominator.

The 1 whole is equivalent to $\frac{8}{8}$

Step 2
First, draw a number line that represents eighths, writing zero-eighths at the start and eight-eighths or one whole at the end.
Then, number the number line by counting on one-eighth at a time. Next, find and touch the number three-eighths on a number line. Then, count forwards one-eighth at a time on a number line from the three-eighths on to eight-eighths or one whole.
Finally the number of eighths counted on is five-eighths, the missing number.

Test Questions

1) $\frac{3}{8}+\ldots=1$
2) $\frac{5}{9}+\ldots=1$
3) $1 \div-\frac{1}{100}$
4) $7 \div \ldots=\frac{7}{100}$
5) $2 \frac{1}{2} \mathrm{~m}+4 \mathrm{~m}=$
6) $\frac{5}{12}+\frac{11}{12}=-+\frac{1}{12}$
7) $\frac{12}{5}-\frac{4}{5}=\ldots+1$
8) $\frac{2}{9}+\frac{8}{9}-\frac{4}{9}=$

Answers

P. 2

1) 1 thousand, 2 hundreds, 3 tens, 4 ones, 5 tenths, 6 hundredths
2) 1 thousand, 2 hundreds, 4 tens, 6 ones, 1 tenths, 9 hundredths
3) 2 thousand, 1 hundreds, 7 tens, 0 ones, 8 tenths, 3 hundredths
4) 3 thousand, 5 hundreds, 3 tens, 7 ones, 7 tenths, 4 hundredths
5) 4 thousand, 0 hundreds, 6 tens, 8 ones, 6 tenths, 1 hundredths
6) 5 thousand, 3 hundreds, 7 tens, 9 ones, 0 tenths, 2 hundredths
7) 6 thousand, 5 hundreds, 1 tens, 3 ones, 9 tenths, 3 hundredths
8) 7 thousand, 2 hundreds, 1 tens, 5 ones, 4 tenths, 8 hundredths
9) 8 thousand, 3 hundreds, 4 tens, 6 ones, 5 tenths, 7 hundredths 10) 9 thousand, 5 hundreds, 3 tens, 7 ones, 2 tenths, 0 hundredths

P. 4

1) $1,000,200,30,4,0.5,0.06$
2) $1,000,200,40,6,0.1,0.09$
3) $2,000,100,70,9,0.8,0.03$
4) $3,000,500,30,7,0.7,0.04$
5) $4,000,0,60,8,0.6,0.01$
6) $5,000,300,70,9,0.0,0.02$
7) $6,000,500,10,3,0.9,0.03$
8) $7,000,200,10,5,0.4,0.08$
9) $8,000,300,40,6,0.5,0.07$
10) $9,000,500,30,7,0.8,0.00$

P. 6

1) 2,750
2) 3,559
3) 4,699
4) 5,455
5) 6,308
6) 7,700
7) 8,619
8) 9,591
9) 10,455
10) 10,309
11) 1,309
12) 1,455
13) 1,591
14) 1,710
15) 3,990
16) 9,740

Answers

P. 10	P. 12	P. 14	P. 16
1) 850	1) 900	1) 18,24	1) 3.9
2) 760	2) 2,400	2) 42,48	2) 3.8
3) 640	3) 1,200	3) 58,64	3) 8.9
4) 520	4) 3,600	4) 21,28	4) 8.9
5) 810 p	5) 7,000	5) 49,56	5) 7.9
6) 730 p	6) 10,000	6) 71,78	6) 6.8
7) $£ 700$	7) 8,000	7) 27,36	7) 8.1
8) $£, 500$	8) $£ 1,800$	8) 63,72	8) 10.0
9) 900	9) 900 cm	9) 37,46	9) 10.0
10) 380	10) $1,500 \mathrm{~m}$	10) 75,100	10) 6.8
11) 750	11) 2,200	11) 95,120	11) 7.6
12) 430	12) 4,500	12) 175,200	12) 10.00
13) 520	13) 2,500	13) 315,415	13) 7.2
14) 350	14) 9,000	14) 683,783	14) 9.1
P. 18	P. 20	P. 22	P. 24
1) 6,081	1) 74.24	1) 1,300	1) 280
2) 5,385	2) 62.85	2) 2,642	2) 1,520
3) 7,520	3) 91.04	3) $£ 4.20$	3) 2,489
4) 9,722	4) 86.22	4) $£ 11.39$	4) 3,345
5) 9,762	5) 74.62	5) 1 hrr 37 min	5) 4,250
6) 9,374	6) 95.72	6) 1 m 350 cr	6) 5,222
7) 7,909	7) 153.09	7) $1,743 \mathrm{ml}$	7) 6,340
8) 3,748	8) 91.08	8) 5,371	8) 7,400
9) 17,634	9) 186.24	9) 0.64	9) 8,690
10) 7,872	10) 108.72	10) 30	10) 8,710
11) 7,693	11) 86.93	11) 42	11) 210
12) 6,386	12) 183.86	12) 81	12) 3,784
13) 7,465	13) 22.65	13) 300	13) 6,969
14) 18,846	14) 198.36	14) 425	14) 8,907

Answers

P. 26

1) 4,950
2) 3,800
3) 5,120
4) 1,340
5) 2,420
6) 3,420
7) 6,130
8) 5,600
9) 9,420
10) 4,960
11) 1,550
12) 5,860
13) 1,540
14) 3,300
15) 0.3
16) 1.2
17) 3.7
18) 6.1
19) 4.5
20) 2.6
21) 0.7
22) 2.2
23) 6.2
24) 0.4
25) 3.2
26) 3.4
27) 3.8
28) 5.3
P. 28
29) 625
30) 865
31) 547
32) 500
33) 480
34) 865
35) 542
36) 400
37) 280
38) 543
39) 765
40) 816
41) 494
42) 632

P. 38

1) 6,792
2) 3,492
3) 2,874
4) 1,189
5) 3,589
6) 3,469
7) 6,771
8) 2,802
9) 7.797
10) 552
11) 1,062
12) 2,163
,
P. 30
13) 4,000
14) 1,000
15) 700
16) 700
17) 1,900
18) 1,800
19) 3,800
20) 4,500
21) 1,600
22) 2,000
23) 740
24) 2,850
25) 2,930
26) 5,700

P. 32

1) 6,0
2) 21,15
3) 33,27
4) 31,24
5) 43,36
6) 55,48
7) 74,65
8) 183,174
9) 278,269
10) 393,384
11) 650,625
12) 875,850
13) 900,800
14) $2,400,2,3($

P. 40

1) 54.9

P. 42

1) 9,700
2) 2,832
3) 3,000
4) $£ 1.70$
5) 776
6) 719
7) 6,523
8) $£ 27.21$
9) 57
10) 24
11) 45
12) 56
13) 72
14) 70

Answers

P. 44	P. 46	P. 48	P. 50
1) 48	1) 40	1) 2,600	1) 112
2) 36	2) 75	2) 390	2) 272
3) 36	3) 30	3) 4,100	3) 1,070
4) 25	4) 120	4) 580	4) 8,540
5) 77	5) 48	5) 6,300	5) 423
6) 16	6) 147	6) 720	6) 312
7) 96	7) 42	7) 8,000	7) 1,125
8) 36	8) 96	8) 940	8) 41,285
9) 27	9) 72	9) 7,500	9) 387
10) 48	10) 84	10) 530	10) 189
11) 81	11) 420	11) 9,100	11) 704
12) 44	12) 960	12) 820	12) 66,060
13) 24	13) 7,200	13) 6,400	
14) 42	14) 84,000	14) 550	
P. 52	P. 54	P. 56	P. 58
1) 64.05	1) 200	1) 3	1) 3.61
2) 330.96	2) 6	2) 9	2) 32.9
3) 372.33	3) 0	3) 9	3) 3.38
4) 412.85	4) 240	4) 46	4) 48.2
5) 128.37	5) 72	5) 4	5) 1.23
6) 367.00	6) 147	6) 98	6) 72.4
7) 660.60	7) 12	7) 30	7) 1,35
8) 260.80	8) 72	8) 96	8) 16.6
9) 372.36	9) 6	9) 110	9) 2.47
10) 424.32	10) 256	10) 56	10) 920.8
11) 434.42	11) 15	11) 2	11) 41.59
12) 402.16	12) 0	12) 7	12) 610.7
	13) 12	13) 12	13) 52.03
	14) 690	14) 11	14) 310.9

Answers

P. 60	P. 62	P. 64	P. 66
1) 228 rr	1) 5.69	1) 4	1) 5
2) $2,712 \mathrm{rl}$	2) 4.12 r 1	2) 2	2) 1
3) $3,567 \mathrm{r} 1$	3) 8.85 r 2	3) 0.07	3) 3
4) 125 rr	4) 7.19 r 3	4) 0.26	4) 12
5) $1,069 \mathrm{r} 3$	5) 8.85	5) 4	5) -8
6) $2,752 \mathrm{r} 1$	6) 4.12	6) 11	6) -14
7) 14 r 5	7) 6.00 r 4	7) 0.3	7) -7
8) 1,852	8) 4.17 r 4	8) 0.6	8) -12
9) 1,835	9) 5.93 r 5	9) 7	9) -13
10) 91 r 3	10) 2.12 r 1	10) 8	10) -15
11) 701		11) 26	11) -7
12) 460 r 4		12) 14	12) 8
13) 33 r 4		13) 8	13) 9
14) 646 r 5		14) 9	14) 11
15) 656 r 2			
P. 68	P. 70	P. 72	P. 74
1) 3,260	1) 5,500	1) 4,000	1) 14
2) 2,140	2) 900	2) 1,000	2) 10
3) 7,660	3) 9,900	3) 9,000	3) 15
4) 7,220	4) 5,900	4) 6,000	4) 20
5) 4,400	5) 2,200	5) 3,000	5) 8
6) 3,200	6) 1,100	6) 2,000	6) 10
7) 40.00	7) 100.00	7) 8,000	7) 9
8) 10.00	8) 200.00	8) 7,000	8) 12
9) 90.00	9) 400.00	9) 4,000	9) 8
10) 60.00	10) 600.00	10) 10,000	10) 26
11) 30.00	11) 600.00	11) 2,000	
12) 20.00	12) 700.00	12) 6,000	
13) 870.00	13) $9,900.00$	13) 1,000	
14) $1,250.00$	14) $9,400.00$	14) 10,000	

Answers

P. 76

1) $\frac{7}{8}$ or $\frac{1}{6}$
2) $\frac{10}{8}$ or $\frac{2}{8}$
3) $\frac{6}{5}$ or $\frac{1}{5}$
4) $\frac{16}{9}$ or $1 \frac{7}{9}$
5) $\frac{11}{9}$ or $\frac{2}{9}$
6) $\frac{12}{7}$ or $\frac{5}{7}$
7) $\frac{9}{7}$ or $\frac{2}{7}$
8) $\frac{7}{5}$ or $1 \frac{2}{5}$
9) $\frac{8}{4}$ or 2
10) $\frac{4}{3}$ or $1 \frac{1}{3}$

P. 78

$9 \frac{3}{9}$ or $\frac{1}{3}$
6) $\frac{1}{3}$
2) $\frac{2}{8}$ or $\frac{1}{4}$
7) 0
3) $\frac{2}{6}$ or $\frac{1}{3}$
8) $\frac{4}{8}$ or $\frac{1}{2}$
4) $\frac{4}{6}$ or $\frac{2}{3}$
9) $\frac{2}{3}$
5) $\frac{2}{4}$ or $\frac{1}{2}$
10) $\frac{6}{9}$ or $\frac{2}{3}$
2) $\frac{4}{9}$
6) $\frac{15}{12}$
3) 100
7) $\frac{3}{5}$
4) 100
8) $\frac{6}{9}$ or $\frac{1}{3}$
P. 80

1) $\frac{5}{8}$
2) $6 \frac{1}{2} \mathrm{~m}$
,

Glossary

Common Factor is a number which is a factor of two or more other numbers, e.g. 3 is a common factor of the numbers 9 and 30 .

Common Multiple is an integer which is a multiple of a given set of integers, e.g. 24 is a common multiple of $2,3,4,6,8$ and 12 .

Decimal Fraction is tenths, hundredths, thousandths etc. represented by digits following a decimal point. E.g. 0.125 is equivalent to $1 / 10+2 / 100+$ $5 / 1000$ or $1 / 8$. The decimal fraction representing $1 / 8$ is a terminating decimal fraction since it has a finite number of decimal places. Other fractions such as $1 / 3$ produce recurring decimal fractions, these have a digit or group of digits that is repeated indefinitely.

Denominator is the number written below the line i.e. the divisor. e.g. in the fraction $2 / 3$ the denominator is 3 .

Digit Value is the value of a digit that relates to its position or place in a number. e.g. in 82 the digits represent 8 tens and 2 ones.

Equivalent Fraction are fractions with the same value as another. e.g. $4 / 8,5 / 10,8 / 16$ are all equivalent fractions and all are equal to $1 / 2$.

Exchanging is to exchange a number for another of equal value. The process of regrouping is used in some standard compact methods of calculation. e.g.: 'carrying figures/exchanging' in addition, multiplication or division; and 'decomposition' in subtraction.

Factor is when a number, can be expressed as the product of two numbers, these are factors of the first. E.g. 1, 2, 3, 4, 6 and 12 are all factors of 12 because $12=1 \times 12=2 \times 6=3 \times 4$.

Glossary

Highest Common Factor (H.C.F.) is the common factor of two or more numbers which has the highest value. e.g. 16 has factors $1,2,4,8,16.24$ has factors $1,2,3,4,6,8,12,24$. 56 has factors $1,2,4,7,8,14,28,56$. The common factors of 16,24 and 56 are 1, 2, 4 and 8 . Their highest common factor is 8 .

Improper Fraction is an improper fraction has a numerator that is greater than its denominator. Example: $9 / 4$ is improper and could be expressed as the mixed number $21 / 4$.

Integer is any of the positive or negative whole numbers and zero. e.g. ... $2,-1,0,+1,+2 \ldots$

Lowest Common Multiple (L.C.M.) is the common multiple of two or more numbers, which has the least value. E.g. 3 has multiples $3,6,9,12 \ldots$. 4 has multiples $4,8,12,16,20,24 \ldots$ and 6 has multiples $6,12,18,24,30 \ldots$ The common multiples of 3,4 and 6 include 12, 24 and 36 . The lowest common multiple of 3,4 and 6 is 12 .

Mixed Fraction is a whole number and a fractional part expressed as a common fraction. e.g. $11 / 3$ is a mixed fraction or mixed number.

Mixed Number is a whole number and a fractional part expressed as a common fraction. Example: $21 / 4$ is a mixed number. Also known as a mixed fraction.

Multiple is the result of multiplying a number by an integer, e.g. 12 is a multiple of 3 because $3 \times 4=12$.

Non-Unit Fraction is a fraction that has a value of 2 or more as the numerator and whose denominator is a non-zero integer. e.g. 1/2, 1/3.

Glossary

Numerator is the number written on the top- the dividend (the part that is divided). In the fraction $2 / 3$, the numerator is 2 .

Operations that, when they are combined, leave the entity on which they operate unchanged. Examples: addition and subtraction are inverse operations e.g. $5+6-6=5$. Multiplication and division are inverse operations e.g. $6 \times 10 \div 10=6$.

Partition 1) To separate a set into subsets. 2) To split a number into component parts. e.g. the two-digit number 38 can be partitioned into $30+8$ or $19+19.3$) A model of division. e.g. $21 \div 7$ is treated as 'how many sevens in 21?'

Percentage 1) A fraction expressed as the number of parts per hundred and recorded using the notation $\%$. E.g. One half can be expressed as 50%; the whole can be expressed as 100% 2) Percentage can also be interpreted as the operator 'a number of hundredths of'.

Place Holder In decimal notation, the zero numeral is used as a place holder to denote the absence of a power of 10 .

Place Value is the value of a digit that relates to its position or place in a number. e.g. in 1482 the digits represent 1 thousand, 4 hundred, 8 tens and 2 ones respectively; in 12.34 the digits represent 1 ten, 2 ones, 3 tenths and 4 hundredths respectively.

Proper Fraction has a numerator that is less than its denominator, so $3 / 4$ is a proper fraction, whereas $4 / 3$ is an improper fraction (i.e. not proper).

Glossary

Regrouping is to exchange a number for another of equal value. The process of regrouping is used in some standard compact methods of calculation. e.g.: 'carrying figures/exchanging' in addition, multiplication or division; and 'decomposition' in subtraction.

Remainder in the context of division requiring a whole number answer (quotient), the amount remaining after the operation.
e.g. 29 divided by $7=4$ remainder 1 .

Simplify Fraction is to simplify a fraction down to its lowest terms. The numerator and denominator are divided by the same number e.g. $4 / 8=2 / 4$, also to 'reduce' a fraction.

When the numerator and denominator are both divided by their highest common factor the fraction is said to have been cancelled down to give the equivalent fraction in its lowest terms. e.g. $18 / 30=3 / 5$ (dividing numerator and denominator by 6).

Unit Fraction is a fraction that has 1 as the numerator and whose denominator is a non-zero integer. e.g. $1 / 2,1 / 3$.

