Year 3

Arithmetic

Workbook

by Richard Brown

Contents Page

Place Value
How Many 1-2
Digit Value 3-4
Add
10 and 100 More 5- 6
More Than 100 7-8
Bonds to 50, 100 9- 10
Multiple Numbers 11- 12
Multiples of 4, 8, 25, 100 13-14
Doubling 15-16
Expanded Column Addition 17-18
Column Addition 19-20
Find the Missing Number 21-22
Subtract
10 and 100 Less 23-24
More Than 100 25-26
Bonds to 50, 100 27-28
Multiple Numbers 29- 30
Multiples of 4, 8, 25, 100 31-32
Doubling 33-34
Expanded Column Subtraction 35-36
Column Subtraction 37-40
Find the Missing Number 41-42
Multiply
Repeated Addition 43-44
Step Counting 45-46
x10 47-48
2-Digit by 1-Digit 49-50

Contents Page

Multiply
Grid Method 51-52
Ladder Method 53-54
Short Multiplication 55-56
Find the Missing Number 57-58
Divide
Repeated Subtraction 59- 60
Inverse of Division 61-62
$\div 10$ 63-64
Long Division 65-66
Short Division 67-68
Find the Missing Number 69-70
Fractions
Fraction of a Quantity 71-72
Add Proper Fractions 73-74
Subtract Proper Fractions 75-76
Find the Missing Number 77-78
Answers and Glossary 79-90

Key Language and Representations

Word Problems are the arithmetic number sentences written in a real-life reasoning and problem solving scenario.

Number Lines are used to count forwards e.g. 0, 4, 8, 12, 16, 20 and also to count backwards e.g. $30,25,20,15,10,5$.

0	1	2	3	4	5	6	7	8	9
10									

Concrete Objects are manipulated or handled to calculate and represent a number sentence i.e. counters, multilink cubes, fraction tiles, metric rulers.

Column Addition is the formal written method of adding two or more numbers together, using a vertical arrangement in a columnar format, with regrouping.

$$
\begin{array}{r}
10 \mathrm{~s} \frac{\mathbf{s}}{} \\
+20 \\
+\quad 30 \\
400 \\
\hline 90 \\
\hline
\end{array}
$$

$\underline{100 s}$	10 s	$\underline{1 \mathrm{~s}}$	
200	70	4	
+			
100	50	8	
400	30	2	
100	10		

$\underline{100 \mathrm{~s}} 10 \mathrm{~s} \underline{1 \mathrm{~s}}$			
	2	7	4
	1	5	8
+	4	3	2
	1	1	

Column Subtraction is the formal written method of subtracting a smaller number from a bigger number, using a vertical arrangement in a columnar format, with regrouping.
$\underline{100 \mathrm{~s}} \quad \underline{10 \mathrm{~s}} \quad \underline{\mathrm{~s}} \quad \underline{100 \mathrm{~s}} \underline{10 \mathrm{~s}} \underline{1 \mathrm{~s}}$

10s 1s

1	5				
-	4				
1	1	\quad	600	110	
---:	---:	---:	---:		
700	20	15			
200	40	6			
400	80	9	\quad		
:---	:---	:---	:---		

Strategy Applied refers to when a formal written method is used to calculat a number sentence e.g. $250-50=200$
Explained using appropriate mathematical language, proven using concrete objects that can be handled, shown with pictorial representations visualising the calculations, to ensure a greater understanding of a mathematical concep 1

Part Whole Models are pictorial mathematical images to represent varied calculations and number sentences.

$$
\text { e.g. } 60+30=? 90 \text { e.g. } 90-20=? 70
$$

Bar Models are an image, that pictorially represents a number sentence.

$$
\text { e.g. } 30+90=?
$$

30	90
$\frac{?}{2}$	

200	
20	$? 180$

Groups of objects represents a total number of objects shared or divided into two or more groups of an equal number of the objects.

$$
\frac{3}{4} \text { of } 16=\underline{12}
$$

Group 1

Group 2

Group 4

Number Grid

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109
110	111	112	113	114	115	116	117	118	119
120	121	122	123	124	125	126	127	128	129
130	131	132	133	134	135	136	137	138	139
140	141	142	143	144	145	146	147	148	149
150	151	152	153	154	155	156	157	158	159

Multiplication Square

x	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0
1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100
11	22	33	44	55	66	77	88	99	110
12	24	36	48	60	72	84	96	108	120

Decimal Number Grid

0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9
3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9
4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9
5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9
6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9
7.0	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9
8.0	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9
9.0	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9
10.0	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9
11.0	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9
12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9
13.0	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9
14.0	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9
15.0	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9

Fraction Walls

1 Whole								
$\frac{1}{2}$								$\frac{1}{2}$
$\frac{1}{3}$			$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$			

How Many

The number 123 is made up of how many 100s (hundreds), 10s (tens) and 1s (ones)?

1) $123=$ \qquad

In Maths a number or figure e.g. 123, is made up of the digits 1, 2 and 3. Each digit has a worth, otherwise known as its place value. The number one hundred and twenty three is a 3-digit number. Each of the digits represents the $\mathbf{1 0 0} \mathbf{s}, \mathbf{1 0 s}$ and 1 s column place values.

Place Value Grid

$\frac{\text { Hundreds }}{\underline{100 \mathrm{~s}}}$	$\frac{\text { Tens }}{\underline{10 \mathrm{~s}}}$	$\underline{\text { Ones }}$
1	$\underline{\mathrm{~s}}$	
1	2	3

Strategy Applied

The number one hundred and twenty three is represented on a Place Value Grid as above.

First, write 3 in the 1 s column place value, which is also how many ones there are in the 1 s column, 3 ones.

Then, write 2 in the 10s column place value, which is also how many tens there are in the 10s column, 2 tens.

Next, write 1 in the 100s column place value, which is also how many hundreds there are in the $\mathbf{1 0 0}$ s column, 1 hundred.

Finally, the Place Value Grid above shows how many 10s and 1s there are, 1 hundred, 2 tens and 3 ones.

Test Questions

How many 100s (hundreds), $\mathbf{1 0 s}$ (tens) and $\mathbf{1 s}$ (ones) make up each number?

1) $123=$ \qquad
2) $246=$ \qquad
3) $179=$ \qquad
4) $280=$ \qquad
5) $357=$ \qquad
6) $468=$ \qquad
7) $379=$ \qquad
8) $460=$ \qquad
9) $513=$
10) $682=$ \qquad
11) $715=$ \qquad
12) $802=$ \qquad
13) $846=$ \qquad
14) $937=$ \qquad

Digit Value

What is the digit value of the $\mathbf{1 s}$ (ones), $\mathbf{1 0 s}$ (tens) and $\mathbf{1 0 0 s}$ (hundreds) in the number 123 ?

1) $123=$ \qquad

In Maths a number or figure e.g. 123, is made up of the digits 1, 2 and 3. Each digit has a worth, otherwise known as its place value. The number one hundred and twenty three is a 3-digit number. Each of the digits represents the $\mathbf{1 0 0}$ s, $\mathbf{1 0}$ s and 1 s column place values.

Place Value Grid

$\frac{\text { Hundreds }}{\underline{100 \mathrm{~s}}}$	$\frac{\text { Tens }}{\underline{10 \mathrm{~s}}}$	$\underline{\text { Ones }}$
1	2	3
1	2 s	

Strategy Applied

The number one hundred and twenty three is represented on a Place Value Grid as above.

First, in the 1 s column the value of the digit is worked out by multiplying how many ones there are, 3 by 1 (1 s column), which is 3 .

Then, in the 10s column the value of the digit is worked out by multiplying how many tens there are, 2 by 10 ($\mathbf{1 0 s}$ column), which is 20 .

Next, in the 10s column the value of the digit is worked out by multiplying how many hundreds there are, 1 by 100 ($\mathbf{1 0 0 s}$ column), which is 100 .

Finally, the digit value of the $\mathbf{1 0 0} \mathbf{s}, \mathbf{1 0 s}$ and $\mathbf{1 s}$ digits is 100,20 and 3.

Test Questions

What is the digit value of the $\mathbf{1 s}$ (ones) $\mathbf{1 0 s}$ (tens) and 100s (hundreds) in each number?

1) $123=$ \qquad
2) $246=$ \qquad
3) $179=$ \qquad
4) $280=$ \qquad
5) $357=$ \qquad
6) $468=$ \qquad
7) $379=$ \qquad
8) $460=$ \qquad
9) $513=$ \qquad
10) $682=$ \qquad
11) $715=$ \qquad
12) $802=$ \qquad
13) $846=$ \qquad
14) $937=$ \qquad

10 and 100 More

1) $138+10=?$

Word Problem

There are one hundred and thirty eight pencils in a container.
What is the sum of ten more?

Partitioning

Column Addition

$$
\begin{array}{rlllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 3 & 0 & +1 & 0 & & 4 & 0 \\
& 8 & + & & & & 8 \\
\hline
\end{array}+
$$

100s 10s 1 s		
1	3	8
+	1	0
1	4	8

Strategy Applied

Partition both numbers into $\mathbf{1 0 0}$ s, 10s, 1s and add together their relative digit values.
$138=100+30+8$ and $10=10+0$.
First, add the $\mathbf{1 0 0}$ s digit values of one hundred and zero, equal to one hundred.
Then, add the 10s digit values of thirty and ten, equal to forty.
Next, add the 1 s digit values of eight and zero, equal to eight.
Then, use column addition to add the values of $100+40+8=148$.
Finally, 138 plus 10 is equal to 148.

Part Whole Model

Bar Model

Test Questions

1) $138+10=$ \qquad
2) $259+10=$ \qquad
3) $399+10=$ \qquad
4) $455+10=$ \qquad
5) $510+10=$ \qquad
6) $642+10=$ \qquad
7) $167+100=$
8) $258+100=$ \qquad
9) $391+100=$ \qquad
10) $402+100=$ \qquad
11) $551+100=$ \qquad
12) $656+100=$ \qquad
13) $772+100=$ \qquad
14) $857+100=$

More than 100

1) $24+?$? $=200$

Word Problem

Ivan has read twenty four pages of a sci-fi book. His book is two hundred pages long. How many more pages does he have left to read?

Number Line

Column Addition

100 s	10 s	1 s
1	0	0
	7	0
		6
1	7	6

Strategy Applied

Use a ruler or number grid to help when counting on.
First, draw a number line and write twenty four at the start and two hundred at the end.
Then, from 24 count on in $\mathbf{1 s}$ to the next multiple of $\mathbf{1 0}$ s, 25, 26, 27, 28, 29, 30, equal to six.
Next, from 30 count on in 10s to the next multiple of 100s, 40, 50, 60, 70, $80,90,100$, equal to seventy.
Then, from 100 count on in 100 s on to two hundred, equal to one hundrec Next, add the amounts counted on from largest to smallest, 100, 70 and 6. Finally, the missing number is 176 .

Part Whole Model

Bar Model

Test Questions

1) $24+\ldots=200$
2) $33+\ldots=300$
3) $167+\ldots=400$
4) $142+\ldots=560$
5) $230+\ldots=600$
6) $165+\ldots=775$
7) $346+\ldots=850$
8) $+123=351$
9) $\ldots+135=562$
10) $\ldots+143=776$
11) $+321=513$
12) $\ldots+531=625$
13) $\ldots+341=676$
14) _ $+231=532$

Bonds to 50 and 100

1) $15+?=50$

Number bonds to 50, means two or more numbers added together that make the number 50 .
Number bonds to $\mathbf{1 0 0}$, means two or more numbers added together that make the number 100 .

Number Grid

10	11	12	13	14	15	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8} \boldsymbol{\mathbf { p }} \mathbf{1 9}$	
$\mathbf{2 0}$	21	22	23	24	25	26	27	28	29
$\mathbf{3}$	31	32	33	34	35	36	37	38	39
$\mathbf{4 0}$	41	42	43	44	45	46	47	48	49
\downarrow $\mathbf{5 0}$	51	52	53	54	55	56	57	58	59

Strategy Applied

First, find and touch the number fifteen on a number grid.
Then, count forwards to the next multiple of 10 s which is twenty, 5 more.
Next, count downwards in multiples of 10 s on to fifty, one, two, three squares, which is $10,20,30$ more.
Then, add the amounts counted on 30 and 5 , equal to 35 .
Finally, the value of the missing number is thirty five.

Part Whole Model

Bar Model

Test Questions

1) $15+\ldots=50$
2) $24+\ldots=50$
3) $36+\ldots=50$
4) $48+\ldots=50$
5) $\ldots+19 \mathrm{p}=50 \mathrm{p}$
6) $\ldots+27 p=50 p$
7) $_£ 30=£ 100$
8) $+\ldots, 50=£ 100$
9) $\ldots+0=50$
10) $\ldots+70=100$
11) $\ldots+20=100$
12) \qquad $+50=100$
13) \qquad $+40=100$
14) \qquad $+60=100$

Multiple Numbers

1) $20+30+40=?$

Word Problem

Three children have collected football stickers. Child A has 20 stickers,
Child B has 30 stickers and Child C has 40 stickers.
How many football stickers do the children have altogether?

Number Line

Strategy Applied

First, find and touch the number twenty on the number line.
Then, count forwards in multiples of 10s $10,20,30$ more aloud in number order, whilst touching the numbers on the number line.
Next, the number counted on to should be fifty.
Then, count forwards in multiples of 10s 10, 20, 30, 40 more aloud in number order, whilst touching the numbers on the number line.
Next, the number counted on to should be ninety.
Finally, twenty plus thirty plus forty equals ninety.

Concrete Object

Column Addition

10 s 1 s
20
$+\quad 30$
4

Part Whole Model

Bar Model

20	30	40
$\underline{? 30}$		

Test Questions

1) $20+30+40=$ \qquad
2) $90+80+70=$ \qquad
3) $60+30+30=$ \qquad
4) $30+300+30=$ \qquad
5) $100+400+200=$ \qquad
6) $200+300+500=$ \qquad
7) $10 \mathrm{p}+50 \mathrm{p}+20 \mathrm{p}=$
8) $£ 40+£ 50+£ 90=$ \qquad
9) $20 \mathrm{~cm}+40 \mathrm{~cm}+30 \mathrm{~cm}=$ \qquad

10, $40 \mathrm{~m}+50 \mathrm{~m}+60 \mathrm{~m}=$ \qquad
11) $=70+90+60$
12) $=150+150+150$
13) $=90+90+70$
14) $=600+200+100$

Multiples of 4, 8, 25, 100

In the number pattern below, find the next two missing numbers.

1) $4,8,12$, \qquad

Word Problem

Evelyn uses counters to make the number pattern of four, eight and twelve She calculates the next two missing numbers in the number pattern. How many counters will she need, to make the next two numbers?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule. First, count forwards from four to eight equalling four, the rule is +4 . Then, count forwards from eight to twelve equalling four, the rule is +4 . The rule is +4 (count on four) to each of the numbers in the number patter: Continue this number pattern to find the next two missing numbers. Next, find twelve on the number line and count on four more, equal to sixteen.
Then, find sixteen on the number line and count on four more, equal to twenty.
Finally, the next two missing numbers in the number pattern are sixteen and twenty.

Test Questions

1) $4,8,12$, \qquad
2) $28,32,36$, \qquad
3) $52,56,60$, \qquad
4) $6,10,14$, \qquad
5) $0,8,16$, \qquad
6) $32,40,48$, \qquad
7) $56,64,72$, \qquad
8) $3,11,19$, \qquad
9) $0,25,50$, \qquad
10) $75,100,125$, \qquad
11) $5,30,55$, \qquad
12) $10,35,60$, \qquad
13) $0,100,200$, \qquad
14) $500,600,700, \ldots$,

Doubling

1) $26+3+3=?$

Word Problem

Twenty six 1 p coins are in a child's piggy bank. Two lots of three 1 p coins are dropped into the piggy bank.
How many 1 p coins are now in the piggy bank?

Number Grid

| 20 | 21 | 22 | 23 | 24 | 25 | $26 \rightarrow 27$ | 28 | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | $31 \rightarrow 32$ | 33 | 34 | 35 | 36 | 37 | 38 | 39 |

Strategy Applied

Use doubling, three add three equals six.
First, find and touch the number twenty six on a number grid.
Then, count forwards six more aloud in number order, whilst touching the numbers on the number grid.
Next, the number counted on to should be thirty two. Finally, twenty six plus six equals thirty two.

Concrete Object

Page 15

Part Whole Model

Bar Model

Test Questions

1) $26+3+3=$
2) $44+4+4=$ \qquad
3) $28+4+4=$ \qquad
4) $16+8+8=$ \qquad
5) $40+8+8=$ \qquad
6) $56+8+8=$ \qquad
7) $250+50+50=$ \qquad
8) $750+50+50=$ \qquad
9) $200+100+100=$ \qquad
$10,700+100+100=$ \qquad
10) $=75+5+5$
11) \qquad $=64+6+6$
12) $=550+75+75$
13) $=450+95+95$

Expanded Column Addition

1) $274+158=$?

Word Problem

Nicholas says the total of the two 3-digit numbers will be greater than $\mathbf{5 0 0}$.
Do you agree?

Step 1

Step 2
\(\begin{array}{rrr}\frac{100 \mathrm{~s}}{200} \& \frac{10 \mathrm{~s}}{70} \& \frac{1 \mathrm{~s}}{4}

+\)| $\mathbf{2 0 0}$ | | 4 |
| :---: | :---: | :---: |
| 100 | 50 | 8 |
| | 30 | 2 |
| 100 | 10 | |$.\end{array}$

Step 3

$\frac{100 \mathrm{~s}}{}$	$\frac{10 \mathrm{~s}}{} \frac{1 \mathrm{~s}}{200}$
$\mathbf{7 0}$	$\frac{4}{4}$
+100 $\mathbf{5 0}$ 8 400 30 2 100 10 $=432$	

Strategy Applied

Step 1

In the $1 \mathbf{s}$ column add altogether, $4+8$, equals 12 ones $(10+2)$.
Write 2 ones in the total value of the 1 s column.
Exchange/Regroup the 10 ones into 1 ten from the 1s column to the 10s column and write 10 below the total value line of the 10 s column.

Step 2

In the 10 s column add altogether, $70+50+10$, equals 13 tens $(100+30)$. Write 30 (3 tens) in the total value of the 10 s column.
Exchange/Regroup the 10 tens into 1 hundred from the 10s column to the 100 s column and write 100 below the total value line of the 100 s colum

Step 3

In the 100s column add altogether, $200+100+100$, equals 4 hundreds (400).

Write 400 in the total value of the 100 s column.
Add altogether the partitioned values, $400+30+2$.
Total value is 432 .

Part Whole Model

Test Questions

1)
+
+

\qquad
3) $400+50+7$
$+200+80+5$
\qquad
5) $400+00+6$

$+$| 200 |
| :--- |

7) $500+00+4$
$+300+60+8$
\qquad
8) $100+30+8$
$+\quad+90+4$

-

\qquad
\qquad

Bar Model

8) $500+40+0$
$+300+60+9$
10)

4 | | 0 | 0 | 5 | 0 | + |
| :--- | :--- | :--- | :--- | :--- | :--- |
| + | | | 0 | + | 3 |

6) $400+60+0$
$+\begin{array}{r}200+40+8 \\ \hline\end{array}$
\qquad
\longrightarrow
7) $400+70+9$
$+\begin{array}{r}200+80+3 \\ \hline\end{array}$
\qquad
\longrightarrow

Page 18

Column Addition

1) $385+247=$?

Word Problem

My number is two hundred and forty seven more than David's, 385.
How much is my number?

Step 1
$\begin{array}{r}100 \mathrm{~s} \frac{10 \mathrm{~s}}{} \frac{1 \mathrm{~s}}{3} \\ +\begin{array}{rr}8 & 5 \\ 2 & 4 \\ 7\end{array} \\ \hline\end{array}$

Step 2
$\begin{array}{r}\frac{100 \mathrm{~s}}{} \frac{10 \mathrm{~s}}{} \frac{1 \mathrm{~s}}{3} \\ +\begin{array}{r}8 \\ 2\end{array} \\ \hline 2\end{array}$

Step 3

$\frac{100 \mathrm{~s}}{} \underline{10 \mathrm{~s}}$	$\frac{1 \mathrm{~s}}{}$	
+3	8	5
2	4	7
6	3	2
1	1	

Strategy Applied

Step 1

In the 1 s column add altogether, $5+7$, equals 12 ones $(10+2)$.
Write 2 in the total value of the 1 s column.
Exchange/Regroup the 10 ones into 1 ten from the 1 s column to the 10s column and write 1 ten below the total value line of the 10 s column.

Step 2

In the 10 s column add altogether, $8+4+1$, equals 13 tens $(100+30)$. Write 3 in the total value of the 10 s column. regroup the 10 tens into Exchange/Regroup the 10 tens into 1 hundred from the 10 s column to the 100 s column and write 1 hundred below the total value line of the 100s column.

Step 3

In the 100 s column add altogether, $3+2+1$, equals 6 hundreds (600). Write 6 in the total value of the 100 s column.
Total value is 632 .

Part Whole Model

Bar Model

Test Questions

2) 237
$+\quad 148$
$\begin{array}{r}4 \\ 457 \\ +\quad 285 \\ \hline\end{array}$
5) 479
$+\begin{array}{r}283 \\ \hline\end{array}$
6) $\begin{array}{r}4 \quad 5 \quad 7 \\ 27 \\ + \\ 2 \quad 8 \quad 5 \\ \hline\end{array}$
7) 540
$+369$
8) 460
$+\quad 248$
10) 504
11) 406
$+\quad 368$
$+\quad 287$

$$
\text { 9) } \begin{array}{rrr}
5 & 4 & 0 \\
3 & 6 & 0 \\
2 & 0 & 5 \\
+ & 1 & 6
\end{array} 9 \begin{aligned}
& \hline
\end{aligned}
$$

14) $\begin{array}{lll}3 & 0 & 4 \\ 2 & 0 & 6 \\ & & 9\end{array}$
15) 138
$+\quad 9 \quad 4$
16) 452
$+\quad 93$
$+\begin{array}{r}9 \quad 3 \\ \hline\end{array}$

Page 20

Find the Missing Number

1) $42+?=36+30$

Word Problem

Group A has the same number of children as Group B.
Group A has forty two girls and a number of boys. Group B has thirty six girls and thirty boys. What is the number of boys in Group A?

Strategy Applied

Step 1

Add together the known number sentence, which is $36+30$.
First, find the 36 on a number line and count forwards in multiples of 10s $10,20,30$ more, which is $46,56,66$.

Step 2

New known fact, $42+$? $=66$
Then, find 42 on a number line and count on to the next multiple of 10 s , which is 50 , equal to 8 .

Next, from 50 count on to the multiple of $\mathbf{1 0 s}$ before $\mathbf{6 6}$, which is $\mathbf{6 0}$, equal to 10 .
Then, from 60 count on in multiples of 1 s up to 66 , which is equal to 6 .
Next, add altogether the amounts counted on, from largest to smallest $10+8+6=24$.
Finally, the value of the missing number is twenty four.

Test Questions

1) $42+\ldots=36+30$
2) 76 is \qquad more than 69
3) $17+5+3=$ \qquad
4) 35 seconds $+\ldots=1$ minute
5) $46 \mathrm{ml}+13 \mathrm{ml}=$ \qquad
6) $30 p+85 p=£ 1+\underline{p}$
7) $482 \mathrm{ml}+\ldots \mathrm{ml}=755 \mathrm{ml}$
8) $47 \mathrm{~cm}+2 \mathrm{~cm}+53 \mathrm{~cm}=$ \qquad cm
9) $285+31+9=$ \qquad
10) What is eight hundred and fifty add twenty eight?
11) $73+\ldots=\overline{43}+59$
12) 99 is \qquad more than 78
13) $25+6+8=$ \qquad
14) $468+57+3=$ \qquad

10 and 100 Less

1) $258-10=?$

Word Problem

Joan says when you subtract ten from any number the digit value of the 10s column will not remain the same. Is it true? Prove it.

Partitioning

Column Addition

$$
\begin{array}{llllllllll}
2 & 0 & 0 & - & 0 & 2 & 0 & 0 \\
& 5 & 0 & - & 1 & 0 & = & 4 & 0 \\
& 8 & & \\
& & & & & & 8 \\
\hline
\end{array}+
$$

100s 10s 1s		
2	5	8
-	1	0
2	4	8

Strategy Applied

Partition both numbers into $\mathbf{1 0 0}$ s, 10 s , 1 s and subtract their relative digit values.
$258=200+50+8$ and $10=10+0$.
First, subtract the 100s digit values of two hundred and zero, equal to two hundred.
Then, subtract the 10s digit values of fifty and ten, equal to forty.
Next, subtract the $\mathbf{1 s}$ digit values of eight and zero, equal to eight.
Then, use column addition to add the values of $200+40+8=248$.
Finally, 258 minus 10 is equal to 248.

Part Whole Model

Bar Model

258	
10	$? \frac{? 248}{}$

Test Questions

1) $258-10=$ \qquad
2) $222-10=$ \qquad
3) $340-10=$ \qquad
4) $345-10=$ \qquad
5) $489-10=$ \qquad
6) $520-10=$ \qquad
7) $613-10=$ \qquad
8) $739-100=$ \qquad
9) $869-100=$ \qquad

10, $971-100=$ \qquad
11) $=458-100$
12) $=561-100$
13) $=699-100$
14) $=905-100$

More Than 100

1) $500-?=375$

Word Problem

Mum has $£ 500$ to buy a new television in Shop A and she has $£ 375$ left after buying the television. How much did she spend?

Number Line

Column Addition

$$
\begin{array}{r}
100 \mathrm{~s} \\
\hline 10 \mathrm{os} \\
\hline
\end{array} \frac{1 \mathrm{~s}}{0} 0 .
$$

Strategy Applied

Use the inverse of subtraction, which is addition and count on from the smallest number to the largest number. $375+\underline{?}=500$
Use a ruler or number grid to help when counting on.
First, draw a number line and write three hundred and seventy five at the start and five hundred at the end.
Then, from 375 count on in 1 s to the next multiple of 10 s, $376,377,378$, 379,380 , equal to five.
Next, from 380 count on in 10s to the next multiple of 100s, 390, 400, equal to twenty.
Then, from 400 count on in 100 s on to 500 , equal to one hundred.
Next, add the amounts counted on from largest to smallest, 100, 25 and 5. Finally, the missing number is 125 .

Part Whole Model

Bar Model

Test Questions

1) $500-\ldots=375$
2) $450-\ldots=135$
3) $600-\ldots=453$
4) $751-\ldots=500$
5) $672-\ldots=520$
6) $850-\ldots=135$
7) $800-\ldots=458$
8) 952 \qquad $=500$
9) 975 \qquad $=520$
10) \qquad - $457=350$
11) \qquad - $235=250$
12) \qquad - $184=560$
13) \qquad - $506=350$
14) \qquad - $368=360$

Bonds to 50, 100

1) $50-?=17$

Number bonds to $\mathbf{5 0}$, means two or more numbers added together that make the number 50 .
Number bonds to $\mathbf{1 0 0}$, means two or more numbers added together that make the number 100 .

Number Grid

$\mathbf{1 0}$	11	12	13	14	15	16	17	$\mathbf{1 8}$	$\mathbf{1 9}$
$\mathbf{2 0}$ $\mathbf{1}$	21	22	23	24	25	26	27	28	29
$\mathbf{3 0}$	31	32	33	34	35	36	37	38	39
$\mathbf{4 0}$ $\mathbf{1}$ $\mathbf{5 0}$	41	42	43	44	45	46	47	48	49

Strategy Applied

First, find and touch the number fifty on a number grid.
Then, count back to the multiple of 10s before the number seventeen, which is twenty.
Count upwards in multiples of 10 s to twenty, one, two, three squares, which is $10,20,30$ less.
Next, count backwards in multiple of $1 \mathbf{s}$ to seventeen, 1, 2, 3 less.
Then, add the amounts counted back 30 and 3 , equal to 33 .
Finally, the value of the missing number is thirty three.

Part Whole Model

Bar Model

Test Questions

1) $50-\ldots=17$
2) $50-\ldots=23$
3) $50-\ldots 32$
4) $50-\ldots=19$
5) $50 \mathrm{p}-9 \mathrm{p}=$ \qquad
6) $50 \mathrm{p}-7 \mathrm{p}=$ \qquad
7) $£_{100}-\underline{£}=£^{23}$
8) $£, 100-\underline{£}=82$
9) $100-\ldots=0$
10) $100-\ldots=90$
11) $100-\ldots=40$
12) $100-\ldots=30$
13) $100-\ldots=50$
14) $100-\ldots=70$

Multiple Numbers

1) $90-30-40=?$

Word Problem

Ninety children are given a letter to attend a school trip, they must return the reply slip if they will be attending. In wk. 1 thirty slips are returned. In wk. 2 forty slips come back. How many children have not replied as yet?

Number Line

Strategy Applied

First, find and touch the number ninety on the number line.
Then, count backwards in multiples of 10s thirty less aloud in number order, whilst touching the numbers on the number line.
Next, the number counted back to should be sixty.
Then, count backwards in multiples of $\mathbf{1 0}$ s forty less aloud in number order, whilst touching the numbers on the number line.
Next, the number counted back to should be twenty.
Finally, ninety subtract thirty subtract forty equals twenty.

Concrete Object

Column Subtraction

$\underline{10 s}$		10s 1s	
9	0	6	0
3	0	4	
6	0		

Part Whole Model

Bar Model

Test Questions

1) $90-30-40=$ \qquad
2) $90-10-50=$ \qquad
3) $80-30-30=$ \qquad
4) $100-20-30=$ \qquad
5) $300-50-100=$ \qquad
6) $500-300-20=$ \qquad
7) $50 \mathrm{p}-10 \mathrm{p}-20 \mathrm{p}=$
8) $£ 90-£ 50-£ 40=$ \qquad
9) $210 \mathrm{~cm}-40 \mathrm{~cm}-30 \mathrm{~cm}=$ \qquad
$10,240 \mathrm{~m}-50 \mathrm{~m}-60 \mathrm{~m}=$ \qquad
10) $=170-90-60$
11) $\quad=450-150-150$
12) $=390-90-70$
13) $=600-200-100$

Multiples of 4, 8, 25, 100

In the number pattern below, find the next two missing numbers.

1) $19,15,11$? ?

Word Problem

Find the rule to make the number pattern of nineteen, fifteen and eleven. Find the next two terms by continuing the same number pattern.

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule.
First, count backwards from nineteen to fifteen equalling four, the rule is -4 .
Then, count backwards from fifteen to eleven equalling four, the rule is -4 .
The rule is -4 (count back four) to each of the numbers in the number pattern.
Continue this number pattern to find the next two missing numbers. Next, find eleven on the number line and count back four less, equal to seven.
Then, find seven on the number line and count back four less, equal to three.
Finally, the next two missing numbers in the number pattern are seven and three.

Test Questions

1) $19,15,11$, \qquad
2) $38,34,30$, \qquad
3) $50,46,42$, \qquad
4) $76,72,68$, \qquad
5) $51,43,35$, \qquad
6) $63,55,47$, \qquad
7) $75,67,59$, \qquad
8) $105, \quad 97, \quad 89$, \qquad
9) $100, \quad 75, \quad 50$, \qquad
10) $200,175,150$, \qquad
11) $300,275,250$, \qquad
12) $400,375,350$, \qquad
13) $741,641,541$, \qquad
14) $962,862, \quad 762$, \qquad

Doubling

1) $15-2-2=?$

Word Problem

Fifteen children's toothbrushes are being given away by a dentist today.
By 11 a.m. she had given away two lots of two toothbrushes.
How many are left?

Number Line

Strategy Applied

Use doubling, two add two equals four.
First, find and touch the number fifteen on a number grid.
Then, count backwards four less aloud in number order, whilst touching the numbers on the number grid.
Next, the number counted back to should be eleven.
Finally, fifteen minus four equals eleven.

Concrete Object

Column Subtraction

$$
\begin{aligned}
& \text { 10s 1s } \\
& 15 \\
& \begin{array}{l}
-\quad 4 \\
\hline 1 \quad 1 \\
\hline
\end{array}
\end{aligned}
$$

Part Whole Model

Bar Model

Test Questions

1) $15-2-2=$
2) $22-5-5=$
3) $29-3-3=$ \qquad
4) $36-6-6=$ \qquad
5) $43-8-8=$
6) $57-7-7=$ \qquad
7) $68-9-9=$
8) $75-10-10=$ \qquad
9) $80-15-15=$ \qquad
10) $90-11-11=$ \qquad
11) __ = $37-13-13$
12) __ = 49-14-14
13) $_=77-25-25$
14) __ = $98-30-30$

Expanded Column Subtraction

1) $735-246=$?

Word Problem

Seven hundred and thirty five pages long, is my son's book. He has read two hundred and forty six pages in 2 wks . How many pages left to read?

Step 3

100 s 10 s	$\underline{1 s}$	
600	120	
700	30	15
$-\quad 200$	40	6

Step 2
100s 10s 1 s
20

$700 \quad 30 \quad 15$		
$-\quad 200 \quad 40 \quad 6$		
		9

Step 4
100s 10s 1 s
$600 \quad 120$
$700 \quad 30 \quad 15$

200	40	6
400	80	9

Strategy Applied

Step 1

In the $\mathbf{1 s}$ column, 5 subtract 6 , you cannot do as 5 is a lower value than 6 .
Exchange/Regroup 1 ten into 10 ones from the 10s column to the 1s column.
Cross out the 30 and write 20 above, then write the exchanged/regrouped 1 ten next to the 5 ones to make 15 .

Step 2

In the 1 s column, 15 subtract 6 , equals 9 (9 ones).
Write 9 in the total value of the 1 s column.
In the 10 s column, 20 subtract 40 ,you cannot do as 20 is a lower value than 40 .

Step 3

Exchange/Regroup 1 hundred into 10 tens from the 100s column to the 10s column.
Cross out the 700 and write 600 above, then write the exchanged/ regrouped 1 hundred next to the 20 to make 120 .

Step 4

In the 10 s column, 120 subtract 40 , equals 80 (8 tens).
Write 80 in the total value of the 10 s column.
In the 100 s column, 600 subtract 200 , equals 400 (4 hundreds). Write 400 in the total value of the 100 s column.
Add altogether the partitioned values, $400+80+9$.
Total value 489.

Test Questions

1) $700-20-5$

- 200 - 40 - 6

3) $600-40-0$

-	5	0	0	-	6	0	-

\qquad

$5)$						
5	0	0	-	0	0	-

\qquad
2) $400-50-7$

- $2000-40-8$
\longrightarrow

4) $800-00-4$

- | 5 | 0 | 0 | -6 |
| ---: | ---: | ---: | ---: | ---: | ---: |

6) $400-00-0$
\qquad
\qquad

Column Subtraction

1) $795-246=$?

Word Problem

A holiday costs seven hundred and ninety five pounds. If you pay a deposit of two hundred and forty six pounds. How much is left to pay?

Step 1
8
$7 \quad 9^{15}$
$-\begin{array}{r}246 \\ \hline\end{array}$

Step 2
8
$\begin{array}{r}79^{15} \\ -\quad 4 \quad 6 \\ \hline 499 \\ \hline\end{array}$

Step 3
8
$\begin{array}{r}79^{15} \\ -\quad 246 \\ \hline 5449 \\ \hline\end{array}$

Strategy Applied

Step 1

In the 1 s column, 5 subtract 6 , you cannot do as 5 is a lower value than 6 .
Exchange/Regroup 1 ten into 10 ones from the 10s column to the 1s column.
Cross out the 9 tens and write 8 tens above, then write the exchanged/ regrouped 1 ten next to the 5 ones to make 15 ones.

Step 2

In the 1 s column, 15 subtract 6 , equals 9 ones (9).
Write 9 in the total value of the 1 s column.
In the $\mathbf{1 0}$ s column, 8 subtract 4 , equals 4 tens (40).
Write 4 in the total value of the 10 s column.

Step 3

In the $\mathbf{1 0 0}$ s column, 7 subtract 2 , equals 5 hundreds (500).
Write 5 in the total value of the $\mathbf{1 0 0}$ s column.
Total value is 549 .

Column Subtraction

1) $804-568=$?

Strategy Applied

Step 1
In the $\mathbf{1 s}$ column, 4 subtract 8 , you cannot do as 4 is a lower value than 8 . From the 10s column, regroup 1 ten from the 0 tens, you cannot do this as the value of the tens is zero.
Instead, exchange/regroup 1 hundred into 10 tens from the 100s column to the 10 s column.
Cross out the 8 hundreds and write 7 hundreds above, then write the exchanged/regrouped 1 hundred next to the 0 tens to make 10 tens.

Step 2

In the 10 s column, exchange/regroup 1 ten into 10 ones from the 10 s column to the 1 s column.
Cross out the 10 tens and write 9 tens above, then write the exchanged/ regrouped 1 ten next to the 4 ones to make 14 ones.

Step 3

In the 1 s column, 14 subtract 8 , equals 6 ones (6).
Write 6 in the total value of the 1 s column.
In the 10 s column, 9 subtract 6 , equals 3 tens (30).
Write 3 in the total value of the 10 s column.
In the 100 s column, 7 subtract 5 , equals 2 hundreds (200).
Write 2 in the total value of the $\mathbf{1 0 0}$ s column.
Total value is 236 .

Column Subtraction

1) $300-94=$?

Step 1
2
$3{ }^{10} 0$
$-\quad 94$

Step 2
29
$3{ }^{1} \theta^{10}$

- $\quad 94$

Step 3
29
$3{ }^{1} \theta{ }^{10}$
$\begin{array}{r}9 \\ \hline 206\end{array}$

Strategy Applied

Step 1
In the 1 s column, 0 subtract 4 , you cannot do as 0 is a lower value than 4 . From the 10s column, regroup 1 ten from the 0 tens to the 1 s column, you cannot do as the value of the tens is zero.
Instead, exchange/regroup 1 hundred into 10 tens from the 100s column to the 10 s column.
Cross out the 3 hundreds and write 2 hundreds above, then write the exchanged/regrouped 1 hundred next to the 0 tens to make 10 tens.

Step 2

In the 10s column, exchange/regroup 1 ten into 10 ones from the 10 s column to the 1 s column.
Cross out the 10 tens and write 9 tens above, then write the exchanged/ regrouped 1 ten next to the 0 ones to make 10 ones.

Step 3

In the 1 s column, 10 subtract 4 , equals 6 ones (6).
Write 6 in the total value of the 1 s column.
In the 10 s column, 9 subtract 9 , equals 0 tens (0).
Write 0 in the total value of the 10 s column.
In the $\mathbf{1 0 0}$ s column, 2 subtract 0 , equals 2 hundreds (200).
Write 2 in the total value of the $\mathbf{1 0 0}$ s column.
Total value is 206 .

Part Whole Model

Bar Model

300	
94	$? 206$

Test Questions

1) 795

- 246
$2)$
$-\quad 278$
-

3) 693
$-\quad 244$
$\begin{array}{r}9577 \\ -\quad 465 \\ \hline\end{array}$
4) 679
5) 568

- 394

7) 840
8) 730
-448
9) 804

- 568

11) 606

- 487

12) $9 \quad 5$

- 635

13) $\begin{array}{r}300 \\ -\quad 9 \quad 4 \\ \hline\end{array}$

$14)$
$-\quad 0 \quad 0$

15) $\begin{array}{r}200 \\ -\end{array} \quad 8 \quad 3$

Find the Missing Number

1) $450-?=310+100$

Word Problem

Train A has four hundred and fifty seats, more seats than Train B.
Train B has three hundred and ten 2nd class seats and one hundred 1 st class seats. How many more seats does Train A have than Train B?

Step 1

Partitioning

$$
\begin{array}{lllllllllll}
3 & 0 & 0 & + & 0 & 0 & 4 & 0 & 0 \\
& 1 & 0 & + & & 0 & 1 & 0 \\
\hline 4 & 1 & 0 \\
& &
\end{array}+
$$

Column Addition

First, add together the known number sentence, which is $310+100$. Then, partition both numbers into $\mathbf{1 0 0}$ s, $10 \mathrm{~s}, 1 \mathrm{~s}$ and add together the relative digit values. $310=300+10+0$ and $100=100+0+0$.
Next, as above add the partitioned digit values of each place value.
Finally, $310+100=410$.

Step 2

Partitioning

Column Subtraction

$$
\begin{array}{rrr}
4 & 5 & 0 \\
-4 & 1 & 0 \\
\hline 0 & 4 & 0 \\
\hline
\end{array}
$$

New known facts $450-$? $=410$ or $450-410=$? First, subtract the known number sentence, which is $450-410=$? Then, partition both numbers into $100 \mathrm{~s}, \mathbf{1 0}$ s, 1 s and subtract the relative digit values. $450=400+50+0$ and $410=400+10+0$.
Next, as above subtract the partitioned digit values of each place value. Finally, $450-410=40$.

Test Questions

1) $450-\ldots=310+100$
2) $35+\ldots-18=27$
3) $350-\ldots-45=185$
4) $1 \mathrm{~kg}-560 \mathrm{~g}=$ \qquad
5) 1 minute 22 seconds - 42 seconds = \qquad
6) $£ 800-£=£ 700$
7) $850-100-10=$
8) Four hundred and sixty eight subtract forty $=$ \qquad
9) $76+$ \qquad - $35=65$
10) $832=512+394$
11) $950-200-30=$ \qquad
12) Seven hundred and twenty eight subtract fifty = \qquad
13) $65-\ldots-19=27$
14) $732=610+357$

Repeated Addition

1) $5 \times 4=?$

Word Problem

There are five toy boxes that have four toys in each box.
How many toys are there altogether?

Number Line

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Strategy Applied

Five times four is the same as four groups of or lots of five.
First, find and touch the number zero on a number line.
Then, count forwards five more aloud in number order, whilst touching the numbers on the number line, on to the number five.
Next, count forwards five more aloud in number order, whilst touching the numbers on the number line, on to the number ten.
Then, count forwards five more aloud in number order, whilst touching the numbers on the number line, on to the number fifteen.
Next, count forwards five more aloud in number order, whilst touching the numbers on the number line, on to the number twenty.
Finally, five times four equals twenty.

Concrete Object

Column Addition

10s 1 s
5
5
5

$+$| $\quad 5$ |
| :--- |
| $2 \quad 0$ |
| 2 |

Regroup 20 ones into 2 ten

Bar Model

5	5	5	5
20			

Test Questions

1) $5 \times 4=$ \qquad
2) $4 \times 6=$ \qquad
3) $7 \times 4=$ \qquad
4) $8 \times 3=$ \qquad
5) $7 \times 3=$ \qquad
6) $5 \times 3=$ \qquad
7) $4 \times 9=$ \qquad
8) $3 \times 3=$ \qquad
9) $8 \times 4=$ \qquad
10) $6 \times 3=$ \qquad
11) $10 \mathrm{x} 3=$ \qquad
12) $2 \times 11=$ \qquad
13) $5 \times 4=$ \qquad
14) $12 \times 10=$ \qquad

Step Counting

1) $8 x ?=40$

Word Problem

One minibus holds eight people.
How many minibuses are needed for forty people?

Number Line

$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41

Strategy Applied

The eight represents the value in each group, the multiplicand.
The missing number represents how many groups there are, the multipli
The forty represents the total value of a number of groups of eight, the product.
For step counting each lot of eight is added on one at a time up to forty, expressing the number value as it is counted on.
First, find and touch the number zero on a number line.
Then, count forwards eight more aloud in number order, whilst touching the numbers on the number line, on to the number eight.
Next, count forwards eight more aloud in number order, whilst touching the numbers on the number line, on to the number sixteen.
Then, count forwards eight more aloud in number order, whilst touching the numbers on the number line, on to the number twenty four.
Next, count forwards eight more aloud in number order, whilst touching the numbers on the number line, on to the number thirty two.
Then, count forwards eight more aloud in number order, whilst touching the numbers on the number line, on to the number forty.
Finally, five lots of eight equals forty.

Step Counting
Bar Model

$$
\begin{gathered}
8 \\
\bullet
\end{gathered} 16 \rightarrow 24 \rightarrow \underset{\bullet}{32} \rightarrow 40
$$

Test Questions

1) $8 x x_{-}=40$
2) $5 x+=45$
3) $3 x+=18$
4) $4 x^{x}=28$
5) $2 x x_{-}=24$
6) $\ldots \mathrm{x} 2=14$
7)
8) $\ldots \mathrm{x} 3=27$
9) $\ldots \mathrm{x} 5=55$
10) $\ldots \mathrm{x} 8=16$
11) $4 \times 11=$ \qquad
12) $3 \times 7=$ \qquad
13) $3 \times 12=$ \qquad
14) $4 \times 7=$ \qquad
15) $7 \times 10=?$

Word Problem

At the Olympics there are ten groups of seven athletes from different countries competing. How many athletes are there altogether?

Place Value Grid

$\underline{\text { Hundreds }}$	$\underline{\text { Tens }}$	$\underline{\text { Ones }}$
	$\underline{100 \mathrm{~s}}$	$\underline{\mathrm{~s}}$
		7
	7	0

Strategy Applied

Multiplying any number by ten, means that number will become ten times as big as.
Each digit in the number will move one column place value to the left. First, write the number seven on a place value grid, in the 1 s column. Then, multiply the seven by ten by writing seven in the $\mathbf{1 0}$ s column, as it moves one column place value to the left and becomes ten times as big as.
Next, in the $1 \mathbf{s}$ column next to the seven cannot be left blank as it still has a value, write zero, a place holder.
Finally, seven multiplied by ten equals seventy.

Step Counting

$$
7 \rightarrow 14 \rightarrow 21 \rightarrow 28 \rightarrow 35 \rightarrow 42 \rightarrow 49 \rightarrow 56 \rightarrow 63 \rightarrow 70
$$

Bar Model

7	7	7	7	7	7	7	7	7	7
70									

Test Questions

1) $7 \times 10=$ \qquad
2) $4 \times 10=$ \qquad
3) $17 \times 10=$ \qquad
4) $8 \times 10=$ \qquad
5) $14 \times 10=$ \qquad
6) $5 \times 10=$ \qquad
7) $15 \times 10=$ \qquad
8) $3 \times 10=$ \qquad
9) $18 \times 10=$ \qquad
10) $6 \times 10=$ \qquad
11) $10 \times 22=$ \qquad
12) $10 \times 24=$ \qquad
13) $10 \times 23=$ \qquad
14) $10 \times 25=$ \qquad

2-Digit by 1-Digit

1) $16 \times 3=?$

Word Problem

A school has to purchase new chairs for three classes during the summer.
Each class needs sixteen chairs each.
How many chairs altogether does the school have to buy?

Number Line

$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62

Partitioning

$$
\begin{array}{llll}
1 & 0 & \mathrm{x} & =30 \\
6 & \mathrm{x} & 3 & =\underline{1} 8 \\
& 48
\end{array}+
$$

Column Addition

$$
\begin{array}{r}
10 \mathrm{~s} \frac{1 \mathrm{~s}}{} \\
\hline 16 \\
+\quad 16 \\
166 \\
\hline 4 \\
\hline 1
\end{array}
$$

Regroup 10 ones into 1 ten.

Strategy Applied

Partition the number sixteen into the digit values of $\mathbf{1 0}$ s and $\mathbf{1 s}, 10+6$ (multiplicand) and multiply each digit value by three, the multiplier.
First, multiply ten by three, equal to thirty.
Then, multiply six by three, equal to eighteen.
Next, use column addition to add thirty and eighteen, equal to forty eight.
Finally, sixteen multiplied by three equals forty eight.

Part Whole Model

Bar Model

16	16	16
? 48		

Test Questions

1) $16 \times 3=$ \qquad
2) $14 \times 4=$ \qquad
3) $12 \times 5=$ \qquad
4) $24 \times 2=$ \qquad
5) $25 \times 3=$ \qquad
6) $24 \times 4=$ \qquad
7) $33 \times 5=$ \qquad
8) $37 \times 2=$ \qquad
9) $36 \times 3=$ \qquad
10) $32 \times 4=$ \qquad
11)
12) $\ldots=54 \times 6$
13)
14) __ $^{=} 71 \times 8$

Grid Method

1) $135 \times 2=?$

Word Problem

Car Park A and Car Park B each have one hundred and thirty five free parking spaces on Bank Holiday Monday.
How many free parking spaces are there altogether?

Grid Method

\mathbf{x}	100	30	5
2	200	60	10

Partitioning

$$
200+60+10=270
$$

Column Addition

$$
\begin{array}{rrr}
100 \mathrm{~s} & 10 \mathrm{~s} & 1 \mathrm{~s} \\
2 & 0 & 0 \\
& 6 & 0 \\
& 1 & 0 \\
\hline 2 & 7 & 0 \\
\hline
\end{array}
$$

Strategy Applied

Step 1
Partition 135×2 into each of their digit values and write them in a grid, $(100+30+5) \times(2)$.
Step 2
Multiply 5 ones by 2 , equals 10 ones.
Step 3
Multiply 30 ones (3 tens) by 2 , equals 60 ones (6 tens).
Step 4
Multiply 100 ones (1 hundred) by 2 , equals 200 ones (2 hundreds).
Step 5
Use Column Addition to add the amounts, $10+60+200$.
Total value is 270 .

Test Questions

x	100	30	5
2			

2)

x	100	80	5
3			

$$
_^{+} _^{+}{ }^{+}
$$

3) | x | 200 | 40 | 3 |
| :---: | :---: | :---: | :---: |
| 4 | | | |
4)

x	200	50	3
5			

$$
_^{+} \ldots^{+}=
$$

5) | x | 300 | 60 | 2 |
| :---: | :---: | :---: | :---: |
| 6 | | | |
6)

x	300	70	2
7			

$$
_^{+} _^{+}{ }^{+}
$$

7) | x | 400 | 10 | 6 |
| :---: | :---: | :---: | :---: |
| 8 | | | |
8)

x	400	20	6
9			

_ + \qquad

$$
+\ldots
$$

\qquad

9) | x | 500 | 0 | 7 |
| :--- | :---: | :---: | :---: |
| 3 | | | |
10)

$$
ـ^{+}{ }^{+}{ }^{+}=
$$

x	500	8	0
4			

$_^{+}+{ }_{-}^{+}=$

Ladder Method

1) $129 \times 7=?$

Word Problem

Seven farmers have an equal amount of sheep, one hundred and twenty nine. How many sheep do all the farmers have collectively?

Step 1

Step 4

Step 2

Step 5

Step 3

Step 6

Strategy Applied

Step 1
In the 1 s column, multiply 9 by 7 , equals 63 ones $(60+3)$.
In the first line of working out, write 3 below the 7 in the
1s column and write 6 below the 2 in the 10 s column.

Step 2

In the $\mathbf{1 0 s}$ column, multiply (20) $\mathbf{2}$ by $\mathbf{7}$, equals 140 ones $(100+40+0)$.
In the second line of working out, write 0 in the 1 s column, write 4 in the 10s column and write 1 in the $\mathbf{1 0 0}$ s column.

Step 3
In the $\mathbf{1 0 0}$ s column, multiply (100) $\mathbf{1}$ by $\mathbf{7}$, equals $\mathbf{7 0 0}$ ones $(700+0+0)$ In the third line of working out, write 0 in the 1 s column, write 0 in the 10s column and write 7 in the $\mathbf{1 0 0}$ s column.

Step 4

Use Column Addition to add altogether, $63+140+700$.
In the 1 s column add altogether, $3+0+0$, equals 3 ones (3).
Write 3 in the total value of the 1 s column.
Step 5
In the $\mathbf{1 0 s}$ column add altogether, $6+4+0$, equals 10 tens $(10+0)$. Write 0 in the total value of the 10 s column.
Exchange/Regroup the 10 tens into 1 hundred from the 10 s column to the 100s column.
Write 1 hundred below the total value line of the $\mathbf{1 0 0 s}$ column.
Step 6
In the 100s column add altogether, $1+7+1$, equals 9 hundreds (900). Write 9 in the total value of the $\mathbf{1 0 0}$ s column.
Total value is 903 .

Test Questions

1) $135 \times 6=$
2) $304 \times 8=$
3) $279 \times 3=$ \qquad
4) $257 \times 5=$ \qquad
5) $138 \times 4=$ \qquad
6) $260 \times 8=$ \qquad
7) $206 \times 7=$ \qquad
8) 340 x $9=$ \qquad

Short Multiplication

1) $139 \times 5=?$

Word Problem

There are multiple boat trips going to the seaside. Five boats each carrying one hundred and thirty nine passengers. How many passengers are there?

Step 1

Step 2

Step 3

Strategy Applied

Step 1

In the 1 s column, multiply 9 by 5 , equals 45 ones $(40+5)$.
Write 5 in the total value of the 1 s column
Exchange/Regroup the 40 ones into 4 tens from the 1s column to the 10s column and write 4 tens below the total value line of the $\mathbf{1 0}$ s column.
Step 2
In the 10 s column, multiply (30) 3 by 5 , equals 15 tens $(100+50)$.
Add the exchanged/regrouped 4 tens (40) below, equals 19 tens ($100+90$).
Write 9 in the total value of the 10 s column.
Exchange/Regroup the 10 tens into 1 hundred from the 10s column to the $\mathbf{1 0 0}$ s column and write 1 below the total value line of the 100 s column.
Step 3
In the 100 s column, multiply (100) 1 by 5 , equals 5 hundreds (500).
Add the exchanged/regrouped 1 hundred (100) below, equals 6 hundreds (600).
Write 6 in the total value of the 100 s column.
Total value is 695 .

Bar Model

139	139	139	139	139
695				

Test Questions

1)

2) $\begin{array}{r}137 \\ \times \quad 8 \\ \hline\end{array}$

3) $\begin{array}{r}139 \\ \times \quad 9 \\ \hline\end{array}$

4)

5) $\begin{array}{r}279 \\ \times \quad 3 \\ \hline\end{array}$
6) $\begin{array}{r}468 \\ \times \quad 4 \\ \hline\end{array}$
7) $\begin{array}{r}340 \\ \times \quad 9 \\ \hline\end{array}$
8) $\begin{array}{r}260 \\ \times \quad 8 \\ \hline\end{array}$

9) $\begin{array}{r}590 \\ \mathrm{x} \\ \hline\end{array}$

10) $\begin{array}{r}304 \\ \times \quad 8 \\ \hline\end{array}$
11) 20
6
12)

13) $\begin{array}{r}138 \\ \times \quad 4 \\ \hline\end{array}$
14)

15) 367

Page 56

Find the Missing Number

1) $2 x+?=4 x 6$

Word Problem

Four pencil cases hold six gel pens each. A further two pencil cases hold exactly the same number of gel pens.
How many gel pens are there in each of the other two pencil cases?

Step 1

$$
6 \rightarrow 12 \rightarrow 18 \rightarrow 24
$$

Strategy Applied

Step 1
Calculate the known number sentence 4×6, using step counting. There are six lots of four,

First, find and touch the number six on a number grid or line and write it down as shown above.
Then, count forwards six more aloud in number order which is equal to twelve, then count forwards six more which is equal to eighteen and count forwards six more which is equal to twenty four.

Step 2
New known fact $2 \times ?=24$.
Apply step counting to calculate the missing number, the multiplier, by counting on in lots of twos up to twenty four.

First, find and touch the number two on a number grid or line and write it down as shown.
Then, count forwards two more aloud in number order which is equal to four, then two more equal to six, next two more equal to eight, then two more equal to ten, next two more equal to twelve and keep repeating this action stopping at the number twenty four.
Finally, there are twelve lots of twos make twenty four.

Test Questions

1) $2 x \ldots=4 \times 6$
2) $\quad=4 \times 5 \times 6$
3) 3 x _ $\mathrm{x} 10=90$
4) $2 \times 25=50$ - \qquad
5) $4 \times 12=8 \times \ldots$
6) $3 \times 35=150$ - \qquad
7) 5 x _ $\mathrm{x} \quad 6=90$
8) $400-\ldots=3 \mathrm{x}$ 27
9) $6 \times 12=8 \times \ldots$
10) $100-\ldots=7 \times 13$
11) $2 \times 4 \times 10=$
12) $500-\ldots=4 \times 37$
13) $2 \times 7 \times 5=$
14) $200-\ldots=8 \times 23$

Repeated Subtraction

1) $24 \div 8=?$

Word Problem

Eight seats are arranged in rows. There are twenty four seats in total.
How many rows of chairs are there?

Number Line

$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41

Strategy Applied

Count backwards in lots of eights from twenty four to zero and how many lots of eights counted back will be the missing number.
First, find and touch the number twenty four on a number line.
Then, count backwards eight less aloud in number order, whilst touching the numbers on the number line, back to the number sixteen.
Next, count backwards eight less aloud in number order, whilst touching the numbers on the number line, back to the number eight.
Then, count backwards eight less aloud in number order, whilst touching the numbers on the number line, back to the number zero.
Finally, the value of the missing number is three.

Concrete Object

Page 59

Part Whole Model

Bar Model

Test Questions

1) $24 \div 8=$ \qquad
2) $66 \div 6=$ \qquad
3) $56 \div 8=$ \qquad
4) $14 \div 7=$ \qquad
5) $88 \div 11=$ \qquad
6) $50 \div 10=$ \qquad
7) $15 \div 3=$ \qquad
8) $36 \div 4=$ \qquad
9) $21 \div 3=$ \qquad
10) $96 \div 12=$ \qquad
11) $20 \div 2=$ \qquad
12) $90 \div 10=$ \qquad
13) $70 \div 10=$ \qquad
14) $55 \div 5=$ \qquad

Inverse of Division

1) ? $\div 3=7$

Word Problem

At lunchtime, seven friends share out a packet of football cards equally between them, getting three cards each. How many cards were in the packet

Number Line

$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39

Strategy Applied

The missing number represents the total value, the dividend.
The three represents how many groups of seven, the divisor.
The seven represents the value in each group, the quotient.
Use the inverse of division which is multiplication, $7 \times 3=$? Apply step counting to calculate the missing number, the dividend, by counting on three lots of seven.
First, find and touch the number zero on a number line.
Then, count forwards seven more aloud in number order, whilst touching the numbers on the number line, on to the number seven.
Then, count forwards seven more aloud in number order, whilst touching the numbers on the number line, on to the number fourteen.
Then, count forwards seven more aloud in number order, whilst touching the numbers on the number line, on to the number twenty one.
Finally, three groups of seven equals twenty one.

Part Whole Model

Bar Models

Test Questions

1) $\ldots \div 3=7$
2) $\ldots \div 2=5$
3) $\ldots \div 4=5$
4) $\quad \div 5=9$
5) $\ldots \div 8=5$
6) $48 \div \ldots=8$
7) $55 \div \ldots=11$
8) $36 \div \ldots=4$
9) $36 \div \ldots=3$
10) $3 \div \ldots=3$
11) $36 \div 9=$ \qquad
12) $32 \div 8=$ \qquad
13) $33 \div 3=$ \qquad
14) $48 \div 4=$ \qquad
15) $360 \div 10=?$

Word Problem

When $£_{360.00}$ in lottery ticket money is shared out equally among ten work colleagues. How much money do they each receive?

Place Value Grid

$\frac{\text { Hundreds }}{\text { 100s }}$	$\begin{gathered} \hline \frac{\text { Tens }}{10 \mathrm{~s}} \end{gathered}$	$\frac{\text { Ones }}{\text { 1s }}$
3	6	0
	3	6

Strategy Applied

Dividing any number by ten, means that number will become ten times as small as.
Each digit in the number will move one column place value to the right. First, write the number three hundred and sixty on a place value grid. Then, divide the three hundred and sixty by ten by writing three in the 10s column, as it moves one column place value to the right.
Next, write six in the 1 s column, as it moves one column place value to the right.
The zero in three hundred and sixty is in the lowest column place value, the 1 s and a place holder, it will not be divided by ten and move columns. Finally, three hundred and sixty divided by ten is equal to thirty six.

Step Counting

360									
36	36	36	36	36	36	36	36	36	36

Test Questions

1) $360 \div 10=$ \qquad
2) $320 \div 10=$ \qquad
3) $330 \div 10=$ \qquad
4) $480 \div 10=$ \qquad
5) $120 \div 10=$ \qquad
6) $720 \div 10=$ \qquad
7) $130 \div 10=$ \qquad
8) $160 \div 10=$ \qquad
9) $240 \div 10=$ \qquad
10) $200 \div 10=$ \qquad
11) $150 \div 10=$ \qquad
12) $170 \div 10=$ \qquad
13) $230 \div 10=$ \qquad
14) $190 \div 10=$ \qquad

Long Division

1) $135 \div 2=?$

Step 1
0
$2 \longdiv { 1 3 5 }$

$$
\begin{array}{ccc}
0 & \\
2 \longdiv { 1 } & 3 & 5 \\
-\frac{0}{1} & 3 &
\end{array}
$$

Step 5

Step 3

Step 6

0	6	7	$r 1$
1	3	5	
-	0		
1	3		
-1	2		
	1	5	
-	1	4	
		1	

Strategy Applied

Step 1
How many lots of 2 divide exactly into 1 , the answer is 0 . (Discuss why) Write 0 on the line above the 1 .

Step 2

Write $\mathbf{0}$ below the 1 and draw a line underneath. (Discuss why)
Then 1 subtract $\mathbf{0}$, equals 1 . Write the $\mathbf{1}$ below the $\mathbf{0}$.
Regroup the 1 to the next digit place value, 3, to make 13, by writing 3 next to the 1 .

Step 3

How many lots of 2 divide exactly into 13 ? The answer is $6(2 \times 6=12)$.
Write 6 on the line above the 3 , next to the 0 .
Write 12 below the 13 and draw a line underneath.
Then 13 subtract 12, equals 1 . Write 1 below the 2 .

Step 4

Regroup the remainder 1 to the next digit place value, 5, by writing 5 nex to the 1 to become 15

Step 5

How many lots of 2 divide exactly into 15 , the answer is $7 .(2 \times 7=14)$.
Write 7 on the line above the 5 next to the 6 .
Write 14 below the 15 and draw a line underneath.

Step 6

Then 15 subtract 14, equals 1 . Write 1 below the 4 .
There are no more digits in the number to regroup the 1 to. (Discuss why)
The 1 becomes a remainder, is written as $r 1$ on the line above, next to the 7 .
Total value is 67 r 1 .

Test Questions

1)

$2 \longdiv { 1 3 5 }$
2)
$3 \longdiv { 1 3 7 }$
5)
$4 \longdiv { 2 7 9 }$
8)
$5 \longdiv { 2 6 0 }$
3)
$4 \longdiv { 1 3 2 }$
4)

$$
3 \longdiv { 2 5 7 }
$$

7)

$4 \longdiv { 3 4 0 }$
10)

$$
5 \longdiv { 3 0 4 }
$$

11)

$6 \longdiv { 2 0 6 }$
12)
$7 \longdiv { 4 \quad 0 \quad 5 }$

Short Division

1) $135 \div 2=?$

Step 1
0
$2 \longdiv { 1 3 5 }$

Step 4
$0 \quad 6$
$2 \longdiv { 4 ^ { 1 3 \quad 1 5 } }$

Step 2
$2 \longdiv { 0 }$

Step 5
$\begin{array}{rrrr}0 & 6 & 7 \\ 2 & 4 & 13 & 15\end{array}$

Strategy Applied

Step 1
How many lots of 2 divide exactly in to 1 ?
The answer is 0 (Discuss why).
Write 0 on the line above the 1 .

Step 2

Cross out the 1 and regroup the remainder 1 to the next digit place value, 3 , to become 13 .

Step 3

How many lots of 2 divide exactly in to 13 ? The answer is $6(2 \times 6=12)$, with remainder 1 .
Write 6 on the line above the 13 .

Step 4
Regroup the remainder 1 to the next digit place value, 5 , to become 15 .

Step 5
How many lots of 2 divide exactly in to 15 ? The answer is $7(2 \times 7=14)$, with remainder 1.
Write 7 on the line above the 15 .

Step 6

There are no more digits in the number to be divided by 2 .
The remainder 1 , is written as r 1 on the line above.
Total value is 67 r 1 .

Test Questions

1)

2)

$$
3 \longdiv { 1 3 7 }
$$

3)

$4 \longdiv { 1 3 2 }$
4)
$3 \longdiv { 2 5 7 }$
5)
$4 \longdiv { 2 7 9 }$
6)
$5 \longdiv { 2 6 8 }$
7)
$4 \longdiv { 3 4 0 }$
8)
$5 \longdiv { 2 6 0 }$
9)
$6 \longdiv { 4 5 0 }$
10)

$$
5 \longdiv { 3 0 4 }
$$

11)

$6 \longdiv { 2 0 6 }$
12)

Find the Missing Number

1) $3 \times 4=36 \div ?$

Word Problem

Three lengths of string, each four meters long are equal to a ball of string that is thirty six meters in length, cut up in to how many equal lengths?

Step 1

$$
3 \rightarrow 6 \rightarrow 9 \rightarrow 12
$$

Strategy Applied

Step 1
Out of the two number sentences, calculate the number sentence with all the known numbers first, 3×4.
Apply step counting to calculate the product of three times four.

First, find and touch the number zero on a number grid or line and write it down as shown above.
Then, count forwards three more aloud in number order, whilst touching the numbers on the number line, which is equal to three.
Next, count forwards three more aloud in number order, whilst touching the numbers on the number line, which is equal to six.
Then, count forwards three more aloud in number order, whilst touching the numbers on the number line, which is equal to nine.
Finally, count forwards three more aloud in number order, whilst touching the numbers on the number line, which is equal to twelve.

Step 2

Step 2
If $3 \times 4=12$, then $12=36 \div$? , as they are the same value Use the inverse of division, which is multiplication, 12 x ? $=36$ Apply step counting to calculate the missing number, by counting on in lots of twelve up to thirty six.

First, find and touch the number twelve on a number grid or line and write it down as shown.
Then, count forwards twelve more aloud in number order, whilst touching the numbers on the number line, which is equal to twenty four.
Next, count forwards twelve more aloud in number order, whilst touching the numbers on the number line, which is equal to thirty six.
Then, say how many groups of twelve were counted on up to thirty six. Finally, the value of the missing number is three.

Test Questions

1) $3 \times 4=60 \div$
2) $60 \div$ _ $=5 \times 6$
3) $4 \times 2=72 \div$
4) $30 \div \ldots=5 \times 3$
5) Divide thirty six by nine $=$
6) $16 \div \ldots=2 \times 4$
7) $2 \times 5=\ldots \div 10$
8) $6 \div \ldots=1 \times 3$
9) $3 \times \ldots=48 \div 8$
10) $4 \div \ldots=2 \times 1$
11) $2 \times 10=\ldots \div 2$
12) $40 \div \ldots=5 \times 4$
13) $10 \times 1=100 \div$
14) $60 \div \ldots=3 \times 10$

Fraction of a Quantity

1) $\frac{2}{5}$ of $35=?$

Word Problem

Five girls share thirty five multilink cubes equally.
How many multilink cubes will two of the girls have in total?

Concrete Object

Strategy Applied

A fraction is part of a whole or part of $\mathbf{1}$ and a fifth is 1 of 5 equal groups. 35 is the quantity shared equally between the total number of equal groups.
5is the denominator, represents the total number of equal groups. 2 is the numerator, represents two of the equal groups.
First, pick up thirty five objects and place them together. Now count aloud from 1 to 35 ,to check there are only thirty five objects.
Then, share the thirty five objects one at a time equally between the five groups, until exactly the same quantity of objects are in each of the groups Next, count how many objects there are altogether in two groups, there should be ten objects; one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen.
Finally, two fifths of thirty five equals fourteen.

Bar Model

35					
7	7	7	7	7	

Test Questions

1) $\frac{2}{5}$ of $35=$
2) $\frac{2}{3}$ of $15=$
3) $\frac{1}{4}$ of $12=$ \qquad
4) $\frac{2}{3}$ of $30=$
5) $\frac{1}{2}$ of $48=$
6) $\frac{2}{5}$ of $25=$
7) $\frac{1}{3}$ of $27=$
8) $\frac{2}{5}$ of $30=$
9) $\frac{1}{2}$ of $52=$
10) $\frac{1}{2}$ of $36 \mathrm{~cm}=$

Add Fractions

1) $\frac{3}{5}+\frac{1}{5}=\frac{?}{?}$

Word Problem

Joan ate three fifths of Christmas Pudding and Patricia ate one fifth as well. Barbara would like to have some, how much has been eaten?

Fraction Tiles

1	1	1					
5	5	5	$+$	1			
:---	:---	:---	:---				
5							
1	1	1	1				
5	5	5	5				

Step 1
Step 2

$$
\frac{3}{5}+\frac{1}{5}=\quad \frac{3+1}{5}=\frac{4}{5}
$$

Strategy Applied

Step 1
Add two fractions with the same denominators, three-fifths and one-fifths.

The 3 represents the numerator. The 1 represents the numerator.
The 5 represents the denominator. The 5 represents the denominator.
$\frac{3}{5}$

Step 2
Add the numerators $3+1$ equalling 4 .
The denominator remains the same as 5 .
The resulting fraction is four-fifths.

Test Questions

1) $\frac{3}{5}+\frac{1}{5}=$
2) $\frac{2}{4}+\frac{1}{4}=$ \qquad
3) $\frac{2}{10}+\frac{7}{10}=$
4) $\frac{4}{6}+\frac{1}{6}=$
5) $\frac{1}{3}+\frac{2}{3}=$ \qquad
6) $\frac{1}{4}+\frac{3}{4}=$ \qquad
7) $\frac{8}{11}+\frac{2}{11}=$
8) $\frac{3}{7}+\frac{2}{7}=$
9) $\frac{3}{8}+\frac{3}{8}=$ \qquad
10) $\frac{1}{2}+\frac{1}{2}=$

Subtract Fractions

1) $\frac{8}{10}-\frac{5}{10}=\frac{?}{?}$

Word Problem

A large pizza is cut into ten equal parts for dinner. Mum is still at work, so two pieces are put in the fridge for her. Eight pieces are left on the plate. Only five pieces are eaten, so how many pieces of pizza are left on the plate:

Fraction Tiles

1	1	1	1	1	1	1	1	1						
10	10	10	10	10	10	10	10	10	$-$	1	1	1	1	1
:---:	:---:	:---:	:---:	:---:										
10	10	10	10	10	$=$	1	1	1						
:---:	:---:	:---:												
10	10	10												

Step 1
Step 2

$$
\frac{8}{10}-\frac{5}{10}=\quad \frac{8-5}{10}=\frac{3}{10}
$$

Strategy Applied

Step 1
Subtract two fractions with the same denominators and different numerators of eight-tenths and five-tenths.

The 8 represents the numerator. The 5 represents the numerator.
The 10 represents the denominator. The 10 represents the denominator.
$\frac{8}{10}$
$\frac{5}{10}$

Step 2
Subtract the numerators 8 - 5 equalling 3 .
The denominator remains the same as 10 .
The resulting fraction is three-tenths.

Test Questions

1) $\frac{8}{10}-\frac{5}{10}=$
2) $\frac{3}{4}-\frac{1}{4}=$
3) $\frac{8}{10}-\frac{3}{10}=$
4) $\frac{13}{20}-\frac{7}{20}=$
5) $\frac{3}{7}-\frac{1}{7}=$
6) $\frac{2}{3}-\frac{1}{3}=$
7) $\frac{14}{15}-\frac{7}{15}=$
8) $\frac{6}{8}-\frac{4}{8}=$
9) $\frac{9}{11}-\frac{7}{11}=$
10) $\frac{6}{8}-\frac{4}{8}=$

Find the Missing Number

1) $5 \div ?=\frac{5}{10}$

Fraction Tiles

$$
\frac{5}{10}=\begin{array}{|c|c|c|c|c|}
\hline 1 & 1 & 1 & 1 & 1 \\
\hline 10 & 10 & 10 & 10 & 10 \\
\hline
\end{array}
$$

Strategy Applied

Out of the two number sentences, calculate the number sentence with all the known numbers first, $\frac{5}{10}$

The 5 represents the numerator.
The 10 represents the denominator.

For $\frac{5}{10}$ the numerator is being divided by the denominator as $5 \div 10$
Therefore $5 \div 10$ is equal to or the same value as $5 \div$?
Despite both number sentences looking different, they both represent the same calculation, which is five divided by ten. $5 \div \mathbf{1 0}$ Therefore the missing number is 10 .

Test Questions

1) $5 \div=\frac{5}{10}$
2) $\frac{1}{8}$ of $56=56 \div$
3) $1-\frac{4}{5}=$
4) $6 \div=\frac{6}{10}$
5) $8-\ldots=\frac{5}{8}$
6) $\frac{1}{4}$ of $28=\frac{1}{2}$ of
7) $\frac{1}{2}$ of $8=\frac{1}{4}$ of
8) $\frac{7}{10}-=\frac{4}{10}$
9) $\frac{8}{8}-\quad=\frac{5}{8}$
10) $\frac{4}{5}+\ldots=1$

Answers

P. 2

1) 1 hundreds, 2 tens, 3 ones
2) 2 hundreds, 4 tens, 6 ones
3) 1 hundreds, 7 tens, 9 ones
4) 2 hundreds, 8 tens, 0 ones
5) 3 hundreds, 5 tens, 7 ones
6) 4 hundreds, 6 tens, 8 ones
7) 3 hundreds, 7 tens, 9 ones
8) 4 hundreds, 6 tens, 0 ones
9) 5 hundreds, 1 tens, 3 ones
10) 6 hundreds, 8 tens, 2 ones
11) 7 hundreds, 1 tens, 5 ones
12) 8 hundreds, 0 tens, 2 ones
13) 8 hundreds, 4 tens, 6 ones
14) 9 hundreds, 3 tens, 7 ones

P. 4

1) $100+20+3$
2) $200+40+6$
3) $100+70+9$
4) $200+80+0$
5) $300+50+7$
6) $400+60+8$
7) $300+70+9$
8) $400+60+0$
9) $500+10+3$
10) $600+80+2$
11) $700+10+5$
12) $800+0+2$
13) $800+40+6$
14) $900+30+7$
P. 6
15) 148
16) 269
17) 409
18) 465
19) 520
20) 652
21) 267
22) 358
23) 491
24) 502
25) 651
26) 756
27) 872
28) 957

P. 8	P. 10	P. 12	P. 14	P. 16
1) 176	1) 35	1) 90	1) 16,20	1) 32
2) 267	2) 26	2) 240	2) 40,44	2) 52
3) 233	3) 14	3) 120	3) 64,68	3) 56
4) 418	4) 2	4) 360	4) 18,22	4) 32
5) 370	5) 31 p	5) 700	5) 24,32	5) 56
6) 610	6) 23 p	6) 1,000	6) 56,64	6) 72
7) 504	7) $£ 70$	7) 80 p	7) 80,88	7) 350
8) 228	8) $¢, 50$	8) $£ 180$	8) 27,35	8) 850
9) 427	9) 50	9) 90 cm	9) 75,100	9) 400
10) 633	10) 30	10) 150 m	10) 150,175	10) 900
11) 192	11) 80	11) 220	11) 80,105	11) 85
12) 94	12) 50	12) 450	12) 85,110	12) 76
13) 335	13) 60	13) 250	13) 300,400	13) 700
14) 301	14) 40	14) 900	14) 800,900	14) 640

Answers

P. 18	P. 20	P. 22	P. 24	P. 26
1) 432	1) 632	1) 24	1) 248	1) 125
2) 385	2) 385	2) 7	2) 212	2) 305
3) 742	3) 651	3) 25	3) 330	3) 147
4) 762	4) 742	4) 25 secs	4) 335	4) 251
5) 693	5) 762	5) 59 ml	5) 479	5) 152
6) 708	6) 1,021	6) 15 p	6) 510	6) 715
7) 872	7) 909	7) 273 ml	7) 603	7) 342
8) 909	8) 708	8) 102 cm	8) 639	8) 452
9) 232	9) 1,274	9) 325 cm	9) 769	9) 455
10) 545	10) 872	10) 878	10) 871	10) 807
	11) 693	11) 29	11) 358	11) 485
	12) 232	12) 21	12) 461	12) 744
	13) 545	13) 39	13) 599	13) 856
	14) 697	14) 528	14) 805	14) 728

P. 28
P. 30
P. 32
P. 34
P. 36

1) 33
2) 20
3) 7,3
4) 11
5) 479
6) 27
7) 30
8) 26,22
9) 12
10) 209
11) 18
12) 20
13) 38,34
14) 23
15) 71
16) 31
17) 50
18) 64,60
19) 24
20) 236
21) $41 p$
22) 150
23) 27,19
24) 27
25) 206
26) 43 p
27) 180
28) 39,31
29) 43
30) 307
31) $£ 77$
32) 20 p
33) 51, 43
34) 50
35) $£ 18$
36) $£ 0$
37) 81,73
38) 55
39) 100
40) 140 cm
41) 25,0
42) 50
43) 10
44) 130 m
45) 125,100
46) 68
47) 60
48) 20
49) 225,200
50) 11
51) 70
52) 150
53) 325,300
54) 21
55) 50
56) 230
57) 441,341
58) 27
59) 30
60) 300
61) 662,562
62) 38

Answers

P. 38	P. 40	P. 42	P. 44	P. 46
1) 549	1) 40	1) 20	1) 5	1) 70
2) 409	2) 10	2) 24	2) 9	2) 40
3) 449	3) 120	3) 28	3) 6	3) 170
4) 492	4) 440 g	4) 24	4) 7	4) 80
5) 196	5) 40 secs	5) 21	5) 12	5) 140
6) 174	6) $£ 100$	6) 25	6) 7	6) 50
7) 271	7) 740	7) 36	7) 7	7) 150
8) 282	8) 728	8) 9	8) 9	8) 30
9) 97	9) 24	9) 32	9) 11	9) 180
10) 236	10) 74	10) 18	10) 2	10) 60
11) 119	11) 720	11) 30	11) 44	11) 220
12) 270	12) 678	12) 22	12) 21	12) 240
13) 206	13) 19	13) 20	13) 36	13) 230
14) 307	14) 235	14) 120	14) 28	14) 250
15) 117				
P. 48	P. 50	P. 52	P. 54	P. 56
1) 48	1) 270	1) 810	1) 810	1) 12
2) 56	2) 555	2) 2,432	2) 1,096	2) 3
3) 60	3) 972	3) 837	3) 1,251	3) 6
4) 48	4) 1,265	4) 1,285	4) 1,285	4) 3
5) 75	5) 2,172	5) 552	5) 837	5) 9
6) 96	6) 2,604	6) 2,080	6) 1,872	6) 80
7) 165	7) 3,328	7) 1,442	7) 3,060	7) 70
8) 74	8) 3,834	8) 3,060	8) 2,080	8) 120
9) 108	9) 1,521		9) 3,540	9) 0
10) 128	10) 2,032		10) 2,432	10) 35
11) 215			11) 1,442	11) 319
12) 324			12) 7,248	12) 8
13) 434			13) 552	13) 352
14) 568			14) 1,356	14) 16
			15) 2,569	

Answers

P. 58	P. 60	P. 62	P. 64	P. 66
1) 3	1) 21	1) 36	1) 67 rl	1) 67 rl
2) 11	2) 10	2) 32	2) 45 r 2	2) 45 r 2
3) 7	3) 20	3) 33	3) 33	3) 33
4) 2	4) 45	4) 48	4) 85 r 2	4) 85 r 2
5) 8	5) 40	5) 12	5) 64 r 3	5) 64 r 3
6) 5	6) 6	6) 72	6) 53 r 3	6) 53 r 3
7) 5	7) 5	7) 13	7) 85	7) 85
8) 9	8) 9	8) 16	8) 52	8) 52
9) 7	9) 12	9) 24	9) 75	9) 75
10) 8	10) 1	10) 20	10) 60 r 4	10) 60 r 4
11) 10	11) 4	11) 15	11) 34 r 2	11) 34 r 2
12) 9	12) 4	12) 17	12) 57 r 6	12) 57 r 6
13) 7	13) 11	13) 23		
14) 11	14) 12	14) 19		

P. 68
P. 70
P. 72
P. 74
P. 76

1) 5
2) 9
3) 10
4) $\frac{4}{5}$ 6) $\frac{4}{4}$
5) $\frac{3}{10}{ }^{6)} \frac{1}{3}$
6) 10
7) 4
8) 3
9) 100
10) 20
11) 2
12) 24
13) $\frac{3}{4} \quad \frac{7)}{11}$
14) $\frac{2}{4}{ }^{7)} \frac{7}{15}$
15) 8
16) 40
17) 10
18) 10
19) 9
20) 2
21) 12
22) $\frac{9}{10}{ }^{8)} \frac{5}{7}$
23) $\frac{5}{10}{ }^{8)} \frac{2}{8}$
24) $\frac{1}{5}$
25) 10
26) 2
27) 26
28) 2
29) 2
30) 2
31) 2
32) 2
33) 18 cm
34) $\frac{5}{6}{ }^{9)} \frac{6}{8}$
35) $\frac{6}{20}{ }^{9)} \frac{2}{11}$
36) $\frac{3}{3}{ }^{10)} \frac{2}{2}$
37) $\frac{2}{7}{ }^{10)} \frac{2}{8}$
38) $\frac{3}{10}$
39) 14
40) $\frac{3}{8}$
41) $\frac{3}{8}$
42) 16
43) $\frac{1}{5}$

Glossary

Amount is something that has a numerical value, for e.g. 10 cubes, $£_{6} 6.08$.

Bar Model is a pictorial representation of a number sentence in the form of bars or boxes used to solve number problems.

Column is a vertical arrangement for example, in a table the cells arranged vertically.

Column Place Value is the value of a digit that relates to its position or place in a number within a column.

Common Factor is a number which is a factor of two or more other numbers, e.g. 3 is a common factor of the numbers 9 and 30 .

Common fraction is a fraction where the numerator and denominator are both integers. Also known as simple or vulgar fraction. Contrast with a compound or complex fraction where the numerator or denominator or both contain fractions.

Common Multiple is an integer which is a multiple of a given set of integer e.g. 24 is a common multiple of $2,3,4,6,8$ and 12 .

Concrete Objects are objects that can be handled and manipulated to support understanding of the structure of a mathematical concept. Materials such as Dienes(Base 10 materials), Cuisenaire, Numicon, are all examples of concrete objects.

Convert is changing from one quantity or measurement to another. e.g. from litres to gallons or from centimetres to millimetres etc.

Glossary

Decimal is relating to the base ten. Most commonly used synonymously with decimal fractions where the number of tenths, hundredth, thousandths, etc. are represented as digits following a decimal point. The decimal point is placed at the right of the ones column. Each column after the decimal point is a decimal place e.g. The decimal fraction 0.275 is said to have three . decimal places. The system of recording with a decimal point is decimal notation. Where a number is rounded to a required number of decimal places, to 2 decimal places for example.

Decimal Fraction is tenths, hundredths, thousandths etc. represented by digits following a decimal point. E.g. 0.125 is equivalent to $1 / 10+2 / 100+$ $5 / 1000$ or $1 / 8$. The decimal fraction representing $1 / 8$ is a terminating decimal fraction since it has a finite number of decimal places. Other fractions such as $1 / 3$ produce recurring decimal fractions, these have a digit or group of digits that is repeated indefinitely.

Denominator is the number written below the line i.e. the divisor. e.g. in the fraction $2 / 3$ the denominator is 3 .

Digit is one of the symbols of a number system most commonly the symbols $0,1,2,3,4,5,6,7,8$ and 9 . Examples: the number 29 is a 2 -digit number; there are three digits in 2.95 . The position or place of a digit in a number conveys its value.

Digit Value is the value of a digit that relates to its position or place in a number. e.g. in 82 the digits represent 8 tens and 2 ones.

Dividend in division, is the number that is divided. e.g. in $15 \div 3,15$ is the dividend.

Divisor is the number by which another is divided. e.g. In the calculation $30 \div 6=5$, the divisor is 6 . In this example, 30 is the dividend and 5 is the quotient.

Glossary

Efficient Methods A means of calculation (which can be mental or written) that achieves a correct answer with as few steps as possible.
In written calculations this often involves setting out calculations in a columnar layout.

Equals is the symbol: $=$, read as 'is equal to' or 'equals'. and meaning 'having the same value as'. e.g. $7-2=4+1$ since both expressions, $7-2$ and $4+1$ have the same value, 5 .

Equivalent Fraction are fractions with the same value as another. e.g. $4 / 8,5 / 10,8 / 16$ are all equivalent fractions and all are equal to $1 / 2$.

Exchanging is to exchange a number for another of equal value. The process of regrouping is used in some standard compact methods of calculation. e.g.: 'carrying figures/exchanging' in addition, multiplication or division; and 'decomposition' in subtraction.

Expanded Form is a way to break up a number to show the value of each digit (Partition).

Factor is when a number, can be expressed as the product of two numbers, these are factors of the first. E.g. 1, 2, 3, 4, 6 and 12 are all factors of 12 because $12=1 \times 12=2 \times 6=3 \times 4$.

Fluency is to be mathematically fluent one must have a mix of conceptual understanding, procedural fluency and knowledge of facts to enable you to tackle problems appropriate to your stage of development confidently, accurately and efficiently.

Glossary

Formal Written Method is the way of setting out working in columnar form. In addition and subtraction, the formal written methods can be referred to as expanded and column addition and/or subtraction. In multiplication, the formal written methods are called short or long multiplication depending on the size of the numbers involved. Similarly in division the formal written methods are called short or long division.

Fraction is the result of dividing one integer by a second integer, which be non- zero. The dividend is the numerator and the non-zero divisor is the denominator. See also decimal fraction, equivalent fraction, improper fraction, proper fraction, unit fraction and vulgar fraction.

Highest Common Factor (H.C.F.) is the common factor of two or more numbers which has the highest value.
e.g. 16 has factors $1,2,4,8,16.24$ has factors $1,2,3,4,6,8,12,24$.

56 has factors $1,2,4,7,8,14,28,56$. The common factors of 16,24 and 56 are 1, 2, 4 and 8 . Their highest common factor is 8 .

Grid a lattice created with two sets of parallel lines. Lines in each set are usually equally spaced. If the sets of lines are at right angles and lines in both sets are equally spaced, a square grid is created.

Hundred Square is a 10 by 10 square grid numbered 1 to 100 . A similar grid could be numbered as a $0-99$ grid.

Improper Fraction is an improper fraction has a numerator that is greater than its denominator. Example: 9/4 is improper and could be expressed as the mixed number $21 / 4$.

Integer is any of the positive or negative whole numbers and zero.
e.g. ...2, $-1,0,+1,+2 \ldots$

Glossary

Inverse is the opposite or reverse operation.

Lowest Common Multiple (L.C.M.) is the common multiple of two or more numbers, which has the least value. Example: 3 has multiples 3, 6, 9, $12,15,18 \ldots .4$ has multiples $4,8,12,16,20,24 \ldots$ and 6 has multiples 6 , $12,18,24,30 \ldots$ The common multiples of 3,4 and 6 include 12,24 and $3($ The lowest common multiple of 3,4 and 6 is 12 .

Mental Calculations refer to calculations that are largely carried out mentally, but may be supported with a few simple written jottings.

Mixed Fraction is a whole number and a fractional part expressed as a common fraction. e.g. $1 / 3$ is a mixed fraction. Also known as a mixed number.

Mixed Number is a whole number and a fractional part expressed as a common fraction. Example: $21 / 4$ is a mixed number. Also known as a mixed fraction.

Multiple is the result of multiplying a number by an integer, e.g. 12 is a multiple of 3 because $3 \times 4=12$.

Multiplicand is a number to be multiplied by another.
e.g. in $6 \times 4,4$ is the multiplier as it is how many lots/groups of 6 .

Multiplier is a number to be multiplied by another.
e.g. in $5 \times 3,5$ is the multiplicand as it is the number to be multiplied by 3 .

Non-Unit Fraction is a fraction that has a value of 2 or more as the numerator and whose denominator is a non-zero integer. E.g. 1/2, 1/3

Number Bond is a pair of numbers with a particular total.

Glossary

Number Line is a line where numbers are represented by points upon it.

Number Sentence is a mathematical sentence involving numbers. e.g. $3+6=9$ and $9>3$

Numerator is the number written on the top- the dividend (the part that is divided). In the fraction $2 / 3$, the numerator is 2 .

Operations that, when they are combined, leave the entity on which they operate unchanged. Examples: addition and subtraction are inverse operations e.g. $5+6-6=5$. Multiplication and division are inverse operations e.g. $6 \times 10 \div 10=6$.

Part Whole Model is a pictorial representation of the relationship between a number or number sentence and its component parts.

Partition 1) To separate a set into subsets. 2) To split a number into component parts. e.g. the two-digit number 38 can be partitioned into $30+8$ or $19+19.3$) A model of division. e.g. $21 \div 7$ is treated as 'how many sevens in 21?'

Percentage 1) A fraction expressed as the number of parts per hundred and recorded using the notation $\%$. E.g. One half can be expressed as 50%; the whole can be expressed as 100% 2) Percentage can also be interpreted as operator 'a number of hundredths of' E.g. 15% of Y means $15 / 100 \times$ Y.

Pictorial Representations do enable learners to use pictures and images to represent the structure of a mathematical concept.
The pictorial representation may build on the familiarity with concrete objects. e.g. a square to represent a Dienes 'flat' (representing 100). Pupils may interpret pictorial representations provided to them or create a pictorial representation themselves to help solve a mathematical problem.

Glossary

Place Holder In decimal notation, the zero numeral is used as a place holder to denote the absence of a power of 10 .

Place Value is the value of a digit that relates to its position or place in a number. e.g. in 1482 the digits represent 1 thousand, 4 hundred, 8 tens and 2 ones respectively; in 12.34 the digits represent 1 ten, 2 ones, 3 tenths and 4 hundredths respectively.

Product is the result of multiplying one number by another. e.g. the product of 2 and 3 is 6 since $2 \times 3=6$.

Proper Fraction has a numerator that is less than its denominator So $3 / 4$ is a proper fraction, whereas $4 / 3$ is an improper fraction (i.e. not proper).

Quantity Something that has a numerical value. e.g. 5 bananas.

Quotient is the result of a division. e.g. $46 \div 3=151 / 3$ and $151 / 3$ is the quotient of 46 by 3 . Where the operation of division is applied to the set of integers, and the result expressed in integers.
e.g. $46 \div 3=15$ remainder 1 then 15 is the quotient of 46 by 3 and 1 is the remainder.

Regrouping is to exchange a number for another of equal value. The process of regrouping is used in some standard compact methods of calculation. e.g.: 'carrying figures/exchanging' in addition, multiplication or division; and 'decomposition' in subtraction.

Remainder in the context of division requiring a whole number answer (quotient), the amount remaining after the operation.
e.g. 29 divided by $7=4$ remainder 1 .

Glossary

Repeated Addition is the process of repeatedly adding the same number or amount. One model for multiplication. e.g. $5+5+5+5=5 \times 4$.

Repeated Subtraction is The process of repeatedly subtracting the same number or amount. One model for division. e.g. $20-5-5-5-5=0$ so $20 \div 4=5$ remainder 0 .

Sequence is succession of terms formed according to a rule. There is a definite relation between one term and the next and between each term and its position in the sequence. e.g. $0,4,8,12,16$ etc.

Short Division is a compact written method of division (four operations).

Short Multiplication is a compact written method of multiplication

Simplify a Fraction is to simplify a fraction down to its lowest terms. The numerator and denominator are divided by the same number e.g. $4 / 8=2 / 4$, also to 'reduce' a fraction.

When the numerator and denominator are both divided by their highest common factor the fraction is said to have been cancelled down to give the equivalent fraction in its lowest terms. e.g. 18/30 $=3 / 5$ (dividing numerator and denominator by 6).

Step Counting is the process of repeatedly adding the same number or amount. One model for multiplication. e.g. $5+10+15+20=5 \times 4$.

Total Value is the sum to a calculation.

Unit Fraction is a fraction that has 1 as the numerator and whose denominator is a non-zero integer. e.g.: $1 / 2,1 / 3$

Zero in a place value system, a place-holder. e.g. 105

