Year 2

Arithmetic

Workbook

by Richard Brown

Contents Page

Place Value
How Many 1-2
Digit Value 3-4
Add
1 More Than 5-6
More Than 1 7-8
10 More Than 9-10
Multiples of 10 11-12
Bonds to 10 and 100 13-14
Multiple Numbers 15-16
Multiples of 2, 3, 5 and 10 17-18
More Than 10 19-20
Doubling 21-22
Column Addition 23-24
Find the Missing Number 25-26
Subtract
1 Less Than 27-28
More Than 1 29-30
10 Less Than 31-32
Multiples of 10 33-34
Bonds to 10 and 100 35-36
Multiple Numbers 37-38
Multiples of 2, 3, 5 and 10 39-40
More Than 10 41-42
Doubling 43-44
Column Subtraction 45-46
Find the Missing Number 47-48

Contents Page

Multiply
Repeated Addition 49-50
Step Counting 51-52
Find the Missing Number 53-54
Divide
Repeated Subtraction 55-56
Inverse of Division 57-58
Find the Missing Number 59- 60
Fractions
Fraction of a Quantity 61-66
Answers and Glossary 67-75

Key Language and Representations

Word Problems are the arithmetic number sentences written in a real-life reasoning and problem solving scenario.
e.g. $15+9=24$

Concrete Objects are manipulated or handled to calculate and represent a number sentence i.e. multilink cubes, numicon, counters, number line.

Number Lines are used to count forwards e.g. 0, 1, 2, 3, 4, 5 and also to count backwards e.g. $10,9,8,7,6,5$.

Column Addition is the formal written method of adding two or more numbers together, using a vertical arrangement in a columnar format.

$$
\underline{1 \mathrm{~s}}
$$

$$
\begin{array}{r}
\frac{1 s}{2} \\
1 \\
+\quad 3 \\
\hline 6 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
10 \mathrm{~s} \\
\hline 1 \mathrm{~s} \\
+1 \\
+1 \\
\hline 3
\end{array}
$$

Regroup 10 ones into 1 ten.

Column Subtraction is the formal written method of subtracting a smaller number from a bigger number, using a vertical arrangement in a columnar format.

$$
\begin{array}{r}
\underline{1 s} \\
3 \\
-\quad 1 \\
\hline 2 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { 10s 1s } \\
& 20 \\
& \begin{array}{r}
10 \\
\hline 1 \quad 0 \\
\hline
\end{array}
\end{aligned}
$$

Strategy Applied refers to when a formal written method is used to calculate a number senter $25-5=20$ Explained using appropriate mathematical language, proven using concrete objects that can be handled, shown with pictorial representations visualising the calculations, to ensure a greater understanding of a mathematical concept

Part Whole Models are pictorial mathematical images to represent varied calculations and number sentences.

$$
\text { e.g. } 6+3=?
$$

Bar Models are an image, that pictorially represents a number sentence.

Groups of objects represents a total number of objects shared or divided into two or more groups of an equal number of the objects.

$$
\frac{1}{2} \text { of } 10=\underline{5}
$$

Group 1

Group 2

Number Grid

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109
110	111	112	113	114	115	116	117	118	119
120	121	122	123	124	125	126	127	128	129
130	131	132	133	134	135	136	137	138	139
140	141	142	143	144	145	146	147	148	149
150	151	152	153	154	155	156	157	158	159

Multiplication Square

x	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0
1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100
11	22	33	44	55	66	77	88	99	110
12	24	36	48	60	72	84	96	108	120

How Many

The number 18 is made up of how many $\mathbf{1 0 s}$ (tens) and $\mathbf{1 s}$ (ones)?

1) $18=$ \qquad

In Maths a number or figure e.g. 18, is made up of the digits 1 and 8. Each digit has a worth, otherwise known as its place value.
The number eighteen is a 2-digit number.
The two digits represent the 10 s and 1 s column place values.

Place Value Grid

$\underline{\text { Hundreds }}$	$\underline{\text { Tens }}$	$\underline{\text { Ones }}$
$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 \mathrm{~s}}$
	1	8

Strategy Applied

The number eighteen is represented on a Place Value Grid as above.

First, write 8 in the 1 s column place value, which is also how many ones there are in the 1 s column, 8 ones.

Then, write 1 in the 10s column place value, which is also how many tens there are in the 10 s column, 1 ten.

Finally, the Place Value Grid above shows how many 10s and 1s there are, 1 ten and 8 ones.

Test Questions

How many 10s (tens) and 1 s (ones) make up each number?

1) $18=$ \qquad
2) $21=$ \qquad
3) $32=$ \qquad
4) $45=$ \qquad
5) $57=$ \qquad
6) $69=$ \qquad
7) $70=$ \qquad
8) $83=$ \qquad
9) $94=$ \qquad
10) $99=$ \qquad
11) $101=$ \qquad
12) $106=$ \qquad
13) $110=$ \qquad
14) $120=$ \qquad

Digit Value

What is the digit value of the $\mathbf{1 0}$ (tens) and $\mathbf{1 s}$ (ones) digits in the number 18

1) $18=$ \qquad

In Maths a number or figure e.g. 18, is made up of the digits 1 and 8. Each digit has a worth, otherwise known as its place value.
The number eighteen is a 2 -digit number.
The two digits represent the 10 s and 1 s column place values.

Place Value Grid

$\underline{\text { Hundreds }}$	$\underline{\text { Tens }}$	$\underline{\text { Ones }}$
$\underline{100 \mathrm{~s}}$	$\underline{10 \mathrm{~s}}$	$\underline{1 \mathrm{~s}}$
	1	8

Strategy Applied

The number eighteen is represented on a Place Value Grid as above.

First, in the 1 s column the value of the digit is worked out by multiplying how many ones there are, 8 by 1 (1 s column), which is 8 .

Next, in the $\mathbf{1 0}$ s column the value of the digit is worked out by multiplying how many tens there are, 1 by 10 ($\mathbf{1 0}$ s column), which is 10 .

Finally, the digit value of the $\mathbf{1 0}$ s and $\mathbf{1 s}$ digits is 10 and 8.

Test Questions

What is the digit value of the $\mathbf{1 0 s}$ (tens) and $\mathbf{1 s}$ (ones) digits in each number?

1) $18=$ \qquad
2) $21=$ \qquad
3) $32=$ \qquad
4) $45=$ \qquad
5) $57=$ \qquad
6) $69=$ \qquad
7) $70=$ \qquad
8) $83=$ \qquad
9) $94=$ \qquad
10) $99=$ \qquad
11) $101=$ \qquad
12) $106=$ \qquad
13) $110=$ \qquad
14) $120=$ \qquad

1 More Than

1) $3+1=?$

Word Problem

Beaulah is thinking of a number. Her number is one more than three.
What is her number?

Number Line

Strategy Applied

First, find and touch the number three on the number line.
Then, count forwards one more aloud in number order, whilst touching the numbers on the number line.
Next, the number counted on to should be four.
Finally, three plus one equals four.

Concrete Object

Column Addition

$$
\begin{array}{r}
\underline{1 s} \\
+\quad 1 \\
\hline 4 \\
\hline
\end{array}
$$

Part Whole Model

Test Questions

1) $3+1=$ \qquad
2) $5+1=$ \qquad
3) $12+1=$ \qquad
4) $19+1=$ \qquad
5) $24+1=$ \qquad
6) $33+1=$ \qquad
7) $57+1=$ \qquad
8) $86+1=$ \qquad
9) $99+1=$ \qquad
10) $100+1=$ \qquad
11) \qquad $=111+1$
12) \qquad $=121+1$
13) 1 more than 13 is $=$ \qquad
14) 1 more than \qquad $=40$

More Than 1

1) $16+3=?$

Word Problem

Uncle Washington has three more grapes than Auntie Merlin.
Aunty Merlin has sixteen grapes.
How many grapes does Uncle Washington have?

Number Line

Strategy Applied

First, find and touch the number sixteen on the number line.
Then, count forwards three more aloud in number order, whilst touching the numbers on the number line.
Next, the number counted on to should be nineteen.
Finally, sixteen plus three equals nineteen.

Concrete Object

Column Addition

$$
\begin{array}{r}
10 \mathrm{~s} \frac{1 \mathrm{~s}}{6} \\
+\quad 6 \\
\hline 19 \\
\hline
\end{array}
$$

Part Whole Model

Bar Model

Test Questions

1) $16+3=$ \qquad
2) $2+9=$ \qquad
3) $4+21=$ \qquad
4) $57+7=$ \qquad
5) $14+5=$ \qquad
6) 1 more than $13=$ \qquad
7) $68+8=$ \qquad
8) $44+6=$ \qquad
9) $5+86=$ \qquad
10) $97+8=$ \qquad
11) \qquad $=4+81$
12) \qquad $=7+52$
13) \qquad $=5+97$
14) \qquad $=8+103$

10 More Than

1) $13+10=?$

Word Problem

Barry is thinking of a number. His number is ten more than thirteen.
What is his number?

Number Grid

10	11	12	13 \downarrow	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29

Strategy Applied

First, find and touch the number thirteen on a number grid.
Then, count down one square which is ten more, aloud in number order, whilst touching the numbers on the number grid.
Next, the number counted on to should be twenty three.
Finally, thirteen plus ten equals twenty three.

Concrete Object

Column Addition

$$
\begin{array}{r}
\frac{10 \mathrm{~s}}{1} \frac{1 \mathrm{~s}}{3} \\
+\quad 130 \\
\hline 23 \\
\hline
\end{array}
$$

Part Whole Model

Bar Model

13	10
? 23	

Test Questions

1) $13+10=$ \qquad
2) $21+10=$ \qquad
3) $10+10=$ \qquad
4) $49+10=$ \qquad
5) $20+10=$ \qquad
6) $47+10=$ \qquad
7) $73+10=$ \qquad
8) $50+10=$ \qquad
9) $99+10=$ \qquad
10) $120+10=$ \qquad
11) \qquad $=10+20$
12) \qquad $=10+45$
13) \qquad $=10+83$
14) \qquad $=10+100$

Multiples of 10s

1) $8+20=?$

Word Problem

Lynchy has eight football stickers. Rodney has twenty more.
How many football stickers does Rodney have?

Number Grid

0	1	2	3	4	5	6	7	8 \downarrow	9
10	11	12	13	14	15	16	17	18 \downarrow	19
20	21	22	23	24	25	26	27	28	29

Strategy Applied

First, find and touch the number eight on a number grid.
Then, count down one, two squares which is ten, twenty more, aloud in number order whilst touching the numbers on the number grid.
Next, the number counted on to should be twenty eight. Finally, eight add twenty equals twenty eight.

Concrete Object

Column Addition

$$
\begin{array}{r}
10 \mathrm{~s} \frac{1 \mathrm{~s}}{8} \\
+\quad 20 \\
\hline 28 \\
\hline
\end{array}
$$

Part Whole Model

8	20
	$\underline{? 28}$

Test Questions

1) $8+20=$ \qquad
2) $18+90=$ \qquad
3) $30+20=$ \qquad
4) $34+40=$ \qquad
5) $20+70=$ \qquad
6) $50+40=$ \qquad
7) $57+60=$ \qquad
8) $26+50=$ \qquad
9) $62+30=$ \qquad
10) $99+10=$ \qquad
11) \qquad
12) \qquad $=47+50$
13) \qquad $=20+100$
14) \qquad $=50+80$

Bonds to 10 and 100

1) $2+?+10$

Number bonds to 10, means two or more numbers added together that make the number 10 .
Number bonds to $\mathbf{1 0 0}$, means two or more numbers added together that make the number 100 .

Number Line

Strategy Applied

First, find and touch the number two on the number line.
Then, count forwards aloud from the next number after two on to ten in number order, whilst touching the numbers on the number line. Next, the amount of numbers counted on should be eight. Finally, two plus eight equals ten.

Concrete Object

Column Addition

$$
\begin{array}{r}
10 \mathrm{~s} \frac{1 \mathrm{~s}}{2} \\
+\quad 8 \\
\hline 10 \\
\hline 1
\end{array}
$$

Regroup 1 ten into 10 ones

Part Whole Model

2	8
	$? 10$

Test Questions

1) $2+\ldots=10$
2) $4+\ldots=10$
3) $6+\ldots=10$
4) $8+\ldots=10$
5) $\ldots+9 p=10 p$
6) \qquad $+7 \mathrm{p}=10 \mathrm{p}$
7) $_+£ 40=£ 100$
8) $\ldots+£^{20}=£_{2} 100$
9)
10) __ $+80=100$
11) \qquad $+10=100$
12) \qquad $+50=100$
13) \qquad $+30=100$
14) \qquad $+70=100$

Multiple Numbers

1) $2+3+4=?$

Word Problem

Three children walked to school. Barbara walked 2 miles, Faye walked 3 miles and Doreen walked 4 miles.
How many miles did all the children walk in total?

Number Line

Strategy Applied

First, find and touch the number two on the number line.
Then, count forwards three more aloud in number order, whilst touching the numbers on the number line.
Next, the number counted on to should be five.
Then, count forwards four more aloud in number order, whilst touching the numbers on the number line.
Next, the number counted on to should be nine.
Finally, two plus three plus four equals nine.

Concrete Object

Part Whole Model

Bar Model

2	3	4
? 9		

Test Questions

1) $2+3+4=$
2) $9+8+7=$ \qquad
3) $6+3+3=$ \qquad
4) $3+30+3=$
5) $10+40+20=$
6) $20+30+50=$ \qquad
7) $10 p+5 p+2 p=$ \qquad
8) $£ 4+£ 5+£ 9=$ \qquad
9) $2 \mathrm{cr}+4 \mathrm{~cm}+3 \mathrm{cr}=$ \qquad
10) $4 \mathrm{~m}+5 \mathrm{~m}+6 \mathrm{~m}=$ \qquad
11) \qquad
12) \qquad $=15+15+15$
13) $\quad=9+9+7$
14) $\ldots=60+20+10$

Multiples of 2, 3, 5 and 10

In the number pattern below, find the next two missing numbers.

1) $2,4,6$, ?, ?

Word Problem

Sebert uses cubes to make the number pattern of two, four and six. He calculates the next two missing numbers in the number pattern. How many cubes will he need, to make the next two numbers?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule. First, count forwards from two to four equalling two, the rule is +2 . Then, count forwards from four to six equalling two, the rule is +2 .
The rule is +2 (count on two) to each of the numbers in the number pattern.
Continue this number pattern to find the next two missing numbers. Next, find six on the number line and count on two more, total is eight. Then, find eight on the number line and count on two more, total is ten. Finally, the next two missing numbers in the number pattern are eight and ten.

Number Line

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Test Questions

1) $2,4,6$, \qquad
2) $18,20,22$, \qquad
3) $32,34,36$, \qquad
4) $68,70,72$, \qquad
5) $3,6,9$, \qquad
6) $15,18,21$, \qquad
7) $24,27,30$, \qquad
8) $33,36,39$, \qquad
9) $35,40,45$, \qquad
10) $45,45,50$, \qquad
11) $55,60,65$, \qquad
12) $70,80,90$, \qquad
13) 90,100110 \qquad
14) 120130140 \qquad

More Than 10

1) $28+11=?$

Word Problem

The temperature was twenty eight degrees in the morning and eleven degrees warmer in the evening.
What was the temperature in the evening?

Number Grid

20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	\downarrow 3	39

Strategy Applied

Partition 11 into multiples of 10 s and $\mathbf{1 s}$, which is $10+1$.
First, find and touch the number twenty eight on a number grid.
Then, count down one square which is ten more, aloud in number order whilst touching the numbers on the number grid.
Next, the number counted on to should be thirty eight.
Then, count forwards one more aloud in number order, whilst touching the numbers on the number grid.
Next, the number counted on to should be thirty nine. Finally, twenty eight plus eleven equals thirty nine.

Partitioning

$$
\begin{array}{rl}
20+10 & 0 \\
8+1 & \frac{9}{3}
\end{array}+
$$

$$
\begin{array}{r}
\frac{10 \mathrm{~s}}{2} \frac{1 \mathrm{~s}}{8} \\
+\quad 1 \frac{1}{4} \\
\hline 39 \\
\hline
\end{array}
$$

Part Whole Model

Bar Model

28	11
$? 39$	

Test Questions

1) $28+11=$ \qquad
2) $65+29=$ \qquad
3) $26+66=$ \qquad
4) $75+14=$ \qquad
5) $68+17=$ \qquad
6) $47+21=$ \qquad
7) $37+44=$ \qquad
8) $61 \mathrm{~cm}+39 \mathrm{~cm}=$ \qquad
9) $19 \mathrm{~m}+81 \mathrm{~m}=$ \qquad
10) $£ 36+£^{32}=$ \qquad
11) \qquad $=54+22$
12) \qquad $=67+33$
13) \qquad $=55+17$
14) \qquad $=72+19$

Doubling

1) $21+4+4=?$

Word Problem

At 9 a.m., there are twenty one cars in a car park. At 9.30 a.m., four cars drive in and park. An hour later, four more cars drive in and park..
How many cars are now in the car park in total?

Number Grid

| 20 | $21 \rightarrow 22$ | 23 | $24 \rightarrow 25$ | 26 | 27 | $28 \rightarrow 29$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Strategy Applied

Use doubling, four add four equals eight.
First, find and touch the number twenty one on a number grid.
Then, count forwards eight more aloud in number order, whilst touching the numbers on the number grid.
Next, the number counted on to should be twenty nine.
Finally, twenty one plus eight equals twenty nine.

Concrete Object

Page 21

Column Addition

$$
\begin{array}{r}
10 \mathrm{~s} \frac{1 \mathrm{~s}}{2} \\
+\quad 1 \\
\hline 29 \\
\hline
\end{array}
$$

Part Whole Model

Bar Model

21	4	4
? 29		

Test Questions

1) $21+4+4=$
2) $58+2+2=$ \qquad
3) $25+5+5=$ \qquad
4) $36+3+3=$ \qquad
5) $50+5+50=$ \qquad
6) $150+30+30=$ \qquad
7) $117+20+20=$ \qquad
8) $45 \mathrm{p}+10 \mathrm{p}+10 \mathrm{p}=$ \qquad
9) $50 \mathrm{p}+20 \mathrm{p}+20 \mathrm{p}=$ \qquad
10) $27 \mathrm{n}+35 \mathrm{n}+35 \mathrm{~m}=$ \qquad
11) $£ 69+£ 30+£ 30=$ \qquad
12) $£ 99+£ 40+£ 40=$ \qquad
13) $=3+30+3$
14) $\ldots=63+10+10$

Column Addition

1) $19+12=?$

Word Problem

Nineteen children voted for football, twelve children voted for tennis.
How many children voted for a sport?

Column Addition

$$
\begin{array}{r}
10 \mathrm{~s} \\
\hline 1 \mathrm{~s} \\
+19 \\
+1
\end{array}
$$

Regroup 10 ones into 1 ten.

Concrete Object

Strategy Applied

First, in the 1 s column, $9+2$, equals 11 ones $(10+1)$.
Then, write 1 in the total value of the 1 s column.
Next, exchange/regroup the 10 ones into 1 ten from the 1 s column to the 10 s column and write 1 ten below the total value line of the 10 s columt Then, in the 10 s column, $1+1+1$, equals 3 tens (30).
Next, write 3 in the total value of the 10 s column.
Finally, nineteen plus twelve equals thirty one.

Bar Model

Part Whole Model

Test Questions

1） 19
 $+\quad 1 \quad 2$
 \qquad

2） 15
7） 34
$+\quad 29$
$+\quad 37$
－
6） 47
$+\quad 21$

3） $\begin{array}{r}16 \\ +\quad 6 \quad 6 \\ \hline\end{array}$
8） 41

$+$| $3 \quad 9$ |
| :--- |

4） 25

9） 51
$+\quad 1 \quad 9$

$$
\begin{array}{r}
5) \\
28 \\
+\quad 17 \\
\hline
\end{array}
$$

10） 26
$+\begin{array}{r}3 \quad 2 \\ \hline\end{array}$

$$
[
$$

12） 57
$+26$
17） 46

$+$| $3 \quad 7$ |
| :--- |

13） 28
 $+66$

18） 63
$+\quad 39$
\square
$\begin{array}{r}14) \\ +\quad 1 \quad 4 \\ \hline \\ \hline\end{array}$
$\begin{array}{r}19) \\ 83 \\ +\quad 1 \quad 9 \\ \hline \\ \hline\end{array}$
15） 60

20） 38
$\begin{array}{r}16) \\ +\quad 7 \\ +\quad 2 \quad 3 \\ \hline\end{array}$
$11 \begin{array}{r}29 \\ +\quad 1 \quad 6 \\ \hline \\ \hline\end{array} ⿳ 亠 口$
$+\begin{array}{r}3 \quad 2 \\ \hline\end{array}$

Find the Missing Number

1) $20=?+14$

Word Problem

Altogether Donald and Dennis have $£ 20$. Dennis has $£ 14$.
How much money does Donald have?

Number Line

Strategy Applied

$20=?+14$ can be written as $14+?$? 20 .
First, find and touch the number fourteen on the number line.
Then, count aloud from the next number after fourteen on to twenty.
Next, say how many numbers were counted on, it should be six more.
Finally, the value of the missing number is six.

Or use the inverse of addition, which is subtraction,
Concrete Object

20

14

20

- $14=$?.

Column Addition

$\underline{10 \mathrm{~s}} 1 \mathrm{~s}$		
0		
	z	10
	1	4
	0	6
Regroup	oup	$1 \text { te }$

Part Whole Model

Bar Model

Test Questions

1) $20=\ldots+14$
2) $72+\ldots=92$
3) $20+\ldots=100$
4) $5+\ldots+3=15$
5) 1 more than $\quad=40$
6) $80=30+$ \qquad
7) $£ 16+\ldots=£ 20$
8) $59 \mathrm{~L}+\ldots=90 \mathrm{~L}$
9) $30 \mathrm{cn}+\ldots=70 \mathrm{~cm}$
10) $50 \mathrm{p}+\ldots=75 \mathrm{p}$
11) $6 \mathrm{~mm}+\ldots+6 \mathrm{~mm}=24 \mathrm{~mm}$
12) $5 \mathrm{~m}+8 \mathrm{~m}+80 \mathrm{~m}=$ \qquad
13) $3+$ \qquad $+6=27$
14) \qquad $=12+47+38$

1 Less Than

1) $3-1=?$

Word Problem

Uncle Nelson is thinking of a number. His number is one fewer than three.
What is his number?

Number Line

Strategy Applied

First, find and touch the number three on the number line.
Then, count backwards one less aloud in number order, whilst touching the numbers on the number line.
Next, the number counted back to should be two.
Finally, three subtract one equals two.

Concrete Object

Column Subtraction

$$
\begin{array}{r}
\frac{1 s}{3} \\
-\quad 1 \\
\hline \underline{2} \\
\hline
\end{array}
$$

Part Whole Model

Bar Model

Test Questions

1) $3-1=$ \qquad
2) $4-1=$ \qquad
3) $6-1=$ \qquad
4) $9-1=$ \qquad
5) Subtract one from eleven $=$ \qquad
6) One less than 7 is $=$ \qquad
7) Fourteen is one less than $=$ \qquad
8) $5 \mathrm{~mm}-1 \mathrm{~mm}=$ \qquad
9) $7 \mathrm{~cm}-1 \mathrm{~cm}=$ \qquad
10) $15 \mathrm{~m}-1 \mathrm{~m}=$ \qquad
11) One less than 27 is $=$ \qquad
12) 19 is one less than = \qquad
13) One less than 53 is $=$ \qquad
14) \qquad - $1 \mathrm{~km}=29 \mathrm{~km}$

More Than 1

1) $19-7=?$

Word Problem

Berty buys a badminton set and a cricket set, costing $£, 7$.
How much change does he get from $£ 19$.

Number Grid

0	1	2	3	4	5	6	7	8	9
10	11	$12 \& 13$	$\mathbf{1 4}$	$\mathbf{1 5} \notin \mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	19		

Strategy Applied

First, find and touch the number nineteen on a number grid.
Then, count backwards seven less aloud in number order, whilst touching the numbers on the number grid.
Next, the number counted back to should be twelve.
Finally, nineteen minus seven equals twelve.

Concrete Object

19

Column Subtraction

Part Whole Model

19	
7	$? \frac{12}{}$

Test Questions

1) $19-7=$ \qquad
2) $13-7=$ \qquad
3) $52-5=$ \qquad
4) $18 \operatorname{secs}-9 \operatorname{secs}=$ \qquad
5) 8 secs - $3 \operatorname{secs}=$ \qquad
6) 91 mins -7 mins $=$ \qquad
7) $83 \mathrm{mins}-9 \mathrm{mins}=$ \qquad
8) $46-3=$ \qquad
9) $9 \mathrm{hrs}-7 \mathrm{hrs}=$ \qquad
10) 5 hrs - $4 \mathrm{hrs}=$ \qquad
11) \qquad $=33-8$
12) \qquad $=47-6$
13) $\ldots=56-3$
14) \qquad $=60-6$

10 Less Than

1) $20-10=?$

Word Problem

Evelyn is thinking of a number. Her number is ten fewer than twenty. What is her number?

Number Line

- 10

Strategy Applied

First, find and touch the number twenty on the number line.
Then, count backwards ten less aloud in number order, whilst touching the numbers on the number line.
Next, the number counted back to should be ten.
Finally, twenty subtract ten equals ten.

Concrete Object

Column Subtraction

$$
\begin{array}{r}
10 \mathrm{~s} \\
\hline 2
\end{array} \frac{1 \mathrm{~s}}{0} 8 \text { }
$$

Part Whole Model

Bar Model

20	
10	$? \frac{? 10}{}$

Test Questions

1) $20-10=$ \qquad
2) $30-10=$ \qquad
3) $52-10=$ \qquad
4) $70-10=$ \qquad
5) $93-10=$ \qquad
6) $20-10=$ \qquad
7) $46-10=$ \qquad
8) $60 g-10 g=$ \qquad
9) $83 g-10 g=$ \qquad
10) $109 \mathrm{~kg}-10 \mathrm{~kg}=$ \qquad
11) \qquad $=20 \mathrm{k}-10 \mathrm{~kg}$
12) \qquad $=157$10
13) $\quad=180-10$
14) \qquad $=201-10$

Multiples of 10s

1) $91-20=?$

Word Problem

A bottle contains ninety one millilitres of a liquid.
Twenty millilitres are poured out, to use in an experiment.
How many millilitres are left in the bottle?

Number Grid

70	71 $\mathbf{1}$	72	73	74	75	76	77	78	79
80	$\mathbf{8 1}$ $\mathbf{个}$	82	83	84	85	86	87	88	89
90	$\mathbf{9 1}$	92	93	94	95	96	97	98	99

Strategy Applied

First, find and touch the number ninety one on a number grid.
Then, count up one, two squares which is ten, twenty less, aloud in number order whilst touching the numbers on the number grid.
Next, the number counted back to should be seventy one.
Finally, ninety one subtract twenty equals seventy one.

Partitioning

$$
\begin{aligned}
90-20 & =70 \\
1- & \frac{1}{7 \quad 1}
\end{aligned}+
$$

Column Subtraction

$\frac{10 s}{}$	$\frac{\mathbf{s}}{}$
$-\quad 1$	
$-\quad 2$	0
7	1

Part Whole Model

Bar Model

91	
20	$?$? 71

Test Questions

1) $91-20=$ \qquad
2) $86-30=$ \qquad
3) $60-50=$ \qquad
4) $94-60=$ \qquad
5) $78-70=$ \qquad
6) $70-30=$ \qquad
7) $43-20=$ \qquad
8) $20-10=$ \qquad
9) $52-40=$ \qquad
10) $80-40=$ \qquad
11) \qquad $=36-20$
12) \qquad $=49-30$
13) $_=50-40$
14) \qquad $=88-50$

Bonds to 10 and 100

1) $10-5=?$

Number bonds to $\mathbf{1 0}$, means two or more numbers added together that make the number 10.
Number bonds to $\mathbf{1 0 0}$, means two or more numbers added together that make the number 100.

Number Line

Strategy Applied

First, find and touch the number ten on the number line.
Then, count backwards five less aloud in number order, whilst touching the numbers on the number line.
Next, the number counted back to should be five.
Finally, ten subtract five equals five.

Concrete Object

Column Addition

10s 1s	
	0
	110
	5
	5
into 10 ones.	

Part Whole Model

Bar Model

10	
5	$? \frac{? 5}{}$

Test Questions

1) $10-5=$ \qquad
2) $10-6=$ \qquad
3) $10-7=$ \qquad
4) $10-9=$ \qquad
5) $10 \mathrm{p}-\ldots=4 \mathrm{p}$
6) $10 \mathrm{p}-\ldots=6 \mathrm{p}$
7) $100 \mathrm{f}-\ldots=18 \mathrm{p}$
8) $£ 100-\ldots=29$
9) $£ 100-\ldots=10$
10) $£ 100-\ldots=£ 42$
11) $100-32=$ \qquad
12) $100-55=$ \qquad
13) $100-44=$ \qquad
14) $100-68=$ \qquad

Multiple Numbers

1) $7-3-1=?$

Word Problem

A toy box contains seven coins. Angus borrows three coins and Colin takes one coin. How many coins are left in the toy box?

Number Line

Strategy Applied

First, find and touch the number seven on the number line.
Then, count backwards three less aloud in number order, whilst touching the numbers on the number line.
Next, the number counted back to should be four.
Then, count backwards one less aloud in number order, whilst touching the numbers on the number line.
Next, the number counted back to should be three.
Finally, seven subtract three subtract one equals three.

Concrete Object

Column Subtraction

Part Whole Model

Bar Model

Test Questions

1) $7-3-1=$ \qquad
2) $9-5-2=$ \qquad
3) $12-6-3=$ \qquad
4) $20-3-4=$
5) $24-6-5=$ \qquad
6) $30-8-2=$ \qquad
7) $36-5-7=$ \qquad
8) $48-6-3=$ \qquad
9) $55-5-4=$
10) $67-4-5=$ \qquad
11) \qquad $=50-30-20$
12) $_=40-10-20$
13) $\ldots=63-10-10$
14) $=100-0-80$

Multiples of 2, 3, 5 and 10

In the number pattern below, find the next two missing numbers.

1) 12108 ?, ?

Word Problem

The three numbers are written down in a number pattern.
Twelve is the greatest number, ten is the next biggest number and eight is the smallest number.
What are the next two missing numbers?

Concrete Object

Strategy Applied

Work out the number pattern, by finding out the difference between the three numbers.
The difference between each of the three numbers is known as the rule. First, count backwards from twelve to ten equalling one, the rule is -2 . Then, count backwards from ten to eight equalling one, the rule is -2 .
The rule is -2 (count back two) from each of the numbers in the number pattern.
Continue this number pattern to find the next two missing numbers.
Next, find eight on the number line and count back two less, total is six. Then, find six on the number line and count back two less, total is four. Finally, the next two missing numbers in the number pattern are six and four.

Number Line

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Test Questions

1) $12,10,8$, \qquad
2) $28,26,24$, \qquad
3) $40,38,36$, \qquad
4) $60,58,56$, \qquad
5) $18,15,12$, \qquad
6) $27,24,21$, \qquad
7) $36,33,30$, \qquad
8) $42,39,36$, \qquad
9) $20,15,10$, \qquad
10) $30,25,20$, \qquad
11) $60,55,50$, \qquad
12) $40,30,20$, \qquad
13) 10090,80 , \qquad
14) 200190180 \qquad

Multiples of 10s and 1s

1) $53-14=?$

Word Problem

Sheridan needs fifty three grams of gluten free wheat to make bread.
There are fourteen grams left in the cupboard.
How many more grams does she need?

Number Grid

30	31	32	33	34	35	36	37	38	39
40	41	$42<$	43 $\mathbf{个}$	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59

Strategy Applied

Partition 14 into multiples of $\mathbf{1 0}$ s and $\mathbf{1 s}$, which is $10+4$.
First, find and touch the number fifty three on a number grid.
Then, count up one square which is ten less, aloud in number order whilst touching the numbers on the number grid.
Next, the number counted back to should be forty three.
Then, count backwards four less aloud in number order, whilst touching the numbers on the number grid.
Next, the number counted on to should be thirty nine.
Finally, fifty three subtract four equals thirty nine.

Bar Model

53		
10	4	? 39

Test Questions

1) $53-14=$
2) $26-12=$ \qquad
3) $19-16=$ \qquad
4) $77-48=$ \qquad
5) $24-13=$
6) $98-84=$ \qquad
7) $56-36=$ \qquad
8) $93-67=$ \qquad
9) $32-19=$ \qquad
10) $82-54=$ \qquad
11) $64-32=$ \qquad
12) $87-51=$ \qquad
13) $_=54-22$
14) $\quad=79-15$

Column Subtraction

10s 1 s
4
513
$-\begin{array}{r}1 \quad 4 \\ \hline 3 \\ \hline\end{array}$
Regroup 1 ten into 10 ones.

Doubling

1) $20-3-3=?$

Word Problem

Joyce and Lance each take three of Richard's twenty colouring pens. How many are left?

Number Line

Strategy Applied

Use doubling, minus three and minus three, equals minus six.
First, find and touch the number twenty on the number line.
Then, count backwards six less aloud in number order, whilst touching the numbers on the number line.
Next, the number counted back to should be fourteen.
Finally, twenty subtract six equals fourteen.

Concrete Object

Column Subtraction

10s 1 s
1
Z 10
$-\begin{array}{r}6 \\ \hline 1 \quad 4 \\ \hline\end{array}$
Regroup 1 ten into 10 ones.

Part Whole Model

Bar Model

20		
3	3	$? 18$

Test Questions

1) $20-3-3=$ \qquad
2) $44-2-2=$ \qquad
3) $28-3-3=$
4) $16-4-4=$
5) $40-5-5=$ \qquad
6) $56-6-6=$ \qquad
7) $25-7-7=$ \qquad
8) $75-8-8=$ \qquad
9) $20-9-9=$
10) $70-10-10=$ \qquad
11) \qquad $=47-2-2$
12) \qquad $=59-2-2$
13) $\quad=66-5-5$
14) $\quad=78-10-10$

Column Subtraction

1) $52-15=?$

Word Problem

Fifty two children are on two coaches. Fifteen of them are on Coach B.
How many children are on Coach A?

Column Subtraction

10s	\underline{s}
4	
$-\quad$5 12 5 3 7	

Regroup 1 ten into 10 ones.

Bar Model

52	
15	? 37

Part Whole Model

Strategy Applied

First, in 1s column, 2 subtract 5, you cannot do as 2 is a lower value than 5 .
Then, exchange/regroup 1 ten into 10 ones from the 10 s column to the 1s column.
Next, cross out the 5 tens and write 4 tens above, then write the exchanged/regrouped 1 ten next to the 2 ones to make 12 ones.
Then, in the 1 s column, 12 subtract 5 , equals 7 ones (7), write 7 in the total value of the 1 s column.
Next, in the 10s column, 4 subtract 1 , equals 3 tens (30), write 3 in the total value of the 10 s column.
Finally, fifty two subtract fifteen equals thirty seven.

Test Questions

1) 52
2) 26

- 15
- $\begin{array}{r}1 \quad 2 \\ \hline\end{array}$

11) 42

- 16

16) 27
$\begin{array}{r}1 \quad 3 \\ \hline\end{array}$
17) 36
18) $7 \quad 7$
19) 26
20) 78

- 19
$-\begin{array}{r}4 \quad 9 \\ -\end{array}$

3) 24
4) 98

$1 \quad 3$

$\begin{array}{r}8 \quad 4 \\ \hline\end{array}$
13) 14

- 13

18) 99

- $8 \quad 5$

4) 93
5) 56
-36
6) 83
7) 57
$-\begin{array}{r}6 \quad 8 \\ \hline\end{array}$
-37
$\begin{array}{r}5) \\ 3 \\ -\quad 1 \quad 9 \\ \hline \\ \hline\end{array}$
8) 82
$\begin{array}{r}5 \quad 4 \\ \hline\end{array}$
9) 22

- $\quad 1 \quad 9$

20) 83
$\begin{array}{r}8 \quad 5 \\ \hline\end{array}$

Find the Missing Number

1) $36-?-5=23$

Word Problem

Rodney goes into a shop with thirty six pence. He buys two items and has twenty three pence in change. One item cost five pence.
What is the cost of the other item?

Number Grid

20	21	22	23	24	25	26	27	28	29
$30<31$	32	33	34	35	36	37	38	39	

Strategy Applied

First, find and touch the number thirty six on a number grid.
Then, count backwards five less aloud in number order, whilst touching the numbers on the number grid.
Next, the number counted back to should be thirty one.
Then, count backwards aloud from the next number before thirty one back to twenty three, whilst touching the numbers on the number grid. Next, say how many numbers were counted back, it should be eight less. Finally, the value of the missing number is eight.

Column Subtraction

10s 1s

36
$\begin{array}{r}5 \\ \hline 3 \quad 1 \\ \hline\end{array}$

Column Subtraction

$$
\begin{array}{rr}
10 \mathrm{~s} & 1 \mathrm{~s} \\
\hline 2 & \\
3 & 1 \\
\hline & 1 \\
\hline 2 & 3 \\
\hline 0 & 8 \\
\hline
\end{array}
$$

Regroup 1 ten into 10 ones

Part Whole Model

Bar Model

36		
$? 88$	5	23

Test Questions

1) $36-\ldots=23$
2) $-31=16$
3) $54-\ldots=13$
4) $21+35=100$ -
5) $10-\ldots=4$
6) $62-10-10=$ \qquad
7) $74-\ldots=39$
8) $100-42-\ldots=48$
9) $100-\ldots=60$
10) $34+13=100-$
11) $67-\ldots=59$
12) $100-19=$ \qquad
13) $98-\ldots=28$
14) $=15-2$

Repeated Addition

1) $5 \mathrm{x} 3=$?

Word Problem

Sarah is counting on in fives starting at zero. She counts on three fives.
What number has she counted on to?

Number Line

Strategy Applied

Five times three is the same as three groups of or lots of five.
First, find and touch the number zero on a number line.
Then, count forwards five more aloud in number order, whilst touching the numbers on the number line, on to the number five.
Next, count forwards five more aloud in number order, whilst touching the numbers on the number line, on to the number ten.
Then, count forwards five more aloud in number order, whilst touching the numbers on the number line, on to the number fifteen.
Finally, five times three equals fifteen.

Concrete Object

Column Addition

$$
\begin{array}{r}
\text { 10s } \frac{1 \mathrm{~s}}{5} \\
+\quad 5 \\
\hline 15 \\
\hline 1
\end{array}
$$

Regroup 10 ones into 1 ten

Part Whole Model

Bar Model

5	5	5
? 15		

Test Questions

1) $5 \times 3=$ \qquad
2) $5 \times 12=$ \qquad
3) $2 \times 10=$ \qquad
4) $10 \times 8=$ \qquad
5) $5 \times 9=$ \qquad
6) $2 \times 12=$ \qquad
7) $10 \times 11=$ \qquad
8) $5 \times 6=$ \qquad
9) $5 \times 7=$
10) $2 \times 7=$ \qquad
11) $10 \times 3=$ \qquad
12) $2 \times 11=$ \qquad
13) $5 \times 4=$ \qquad
14) $12 \times 10=$ \qquad

Step Counting

1) $3 \times 2=?$

Word Problem

There are two tricycles on the playground. Each tricycle has three wheels. How many wheels are there altogether?

Number Line

$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Strategy Applied

For step counting each lot of three is added on one at a time, expressing the number value as it is counted on.

First, find and touch the number zero on a number line.
Then, count forwards three more aloud in number order, whilst touching the numbers on the number line, on to the number three.
Next, count forwards three more aloud in number order, whilst touching the numbers on the number line, on to the number six.
Finally, two groups of three equals six.

Concrete Object

Step Counting

$$
\begin{aligned}
& 3 \rightarrow 6 \\
& \bullet
\end{aligned}
$$

Part Whole Model

Bar Model

Test Questions

1) $2 \times 3=$ \qquad
2) $2 \times 4=$ \qquad
3) $4 \times 6=$ \qquad
4) $4 \times 4=$ \qquad
5) $3 \times 8=$ \qquad
6) $3 \times 4=$ \qquad
7) $4 \times 9=$ \qquad
8) $3 \times 9=$ \qquad
9) $3 \times 10=$
10) $4 \times 10=$ \qquad
11) $4 \times 11=$ \qquad
12) $3 \times 7=$ \qquad
13) $3 \times 12=$ \qquad
14) $4 \times 7=$ \qquad

Find the Missing Number

1) \square ? x $5=25$

Word Problem

Linda has five objects in one bag. The same number of objects are in each of the bags. There are twenty five objects in total.
How many bags of objects does Linda have?

Number Line

| $\mathbf{0}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{1 9} 9$

Strategy Applied

Apply step counting to calculate the missing number, the multiplicand, by counting on in lots of five up to twenty five.

First, find and touch the number zero on a number line.
Then, count forwards five more aloud in number order, whilst touching the numbers on the number line, on to the number five.
Next, count forwards five more aloud in number order, whilst touching the numbers on the number line, on to the number ten.
Then, count forwards five more aloud in number order, whilst touching the numbers on the number line, on to the number fifteen.
Next, count forwards five more aloud in number order, whilst touching the numbers on the number line, on to the number twenty.
Then, count forwards five more aloud in number order, whilst touching the numbers on the number line, on to the number twenty five.
Finally, five groups of five equals twenty five.

Step Counting

$$
5 \rightarrow 10 \rightarrow 15 \rightarrow 20 \rightarrow 25
$$

25					
5	5	5	5	5	

Test Questions

1)
2) $\ldots \mathrm{x}$. $6=60$
3) $2 \times 5=\ldots \times 2$
4) $30=5 x$ \qquad
5) $\ldots \mathrm{x}=45$
6) $4 \times x^{=}=40$
7) $3 \times 10=$ \qquad
8) $12 \times \ldots=6 x 10$
9) $7 \times 2=2 x$ \qquad
10) $8 \times 2=$ \qquad x 4
11) $5 \times 12=\ldots \times 5$
12) $10 \times \ldots=9 \times 10$
13) $4 \times \ldots=8 \times 5$
14) $6 x 4=2 x$

Repeated Subtraction

1) $15 \div 5=?$

Word Problem

Cookies come in packs (groups) of five. Fifteen cookies are placed on a plate.
How many packs (groups) of cookies were used?

Number Line

$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Strategy Applied

Count backwards in lots of fives from fifteen to zero and the amount of fives counted back will be the missing number.

First, find and touch the number fifteen on a number line.
Then, count backwards five less aloud in number order, whilst touching the numbers on the number line, back to the number ten.
Next, count backwards five less aloud in number order, whilst touching the numbers on the number line, back to the number five.
Then, count backwards five less aloud in number order, whilst touching the numbers on the number line, back to the number zero.
Finally, the value of the missing number is three.

Concrete Object

Part Whole Model

Bar Model

Test Questions

1) $15 \div 5=$ \qquad
2) $70 \div 10=$ \qquad
3) $60 \div 5=$ \qquad
4) $18 \div 2=$ \qquad
5) $90 \div 10=$ \qquad
6) $55 \div 5=$ \qquad
7) $16 \div 2=$ \qquad
8) $40 \div 5=$ \qquad
9) $22 \div 2=$ \qquad
10) $100 \div 10=$ \qquad
11) $24 \div 2=$ \qquad
12) $120 \div 10=$ \qquad
13) $80 \div 10=$ \qquad
14) $60 \div 5=$ \qquad

Inverse of Division

1) $18 \div ?=6$

Word Problem

At break time, friends equally share out eighteen marbles.
They each receive six marbles.
How many friends are there?

Number Line

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Strategy Applied

Use the inverse of division which is multiplication. $6 \times$? $=18$
Apply step counting to calculate the missing number, which is how many lots of sixes counted on from zero on to eighteen.

First, find and touch the number zero on a number line.
Then, count forwards six more aloud in number order, whilst touching the numbers on the number line, on to the number six.
Then, count forwards six more aloud in number order, whilst touching the numbers on the number line, on to the number twelve.
Then, count forwards six more aloud in number order, whilst touching the numbers on the number line, on to the number eighteen.
Finally, three groups of six equals eighteen.
Bar Model

Step Counting

$$
\begin{gathered}
6 \\
\bullet \\
\bullet
\end{gathered}
$$

18		
6	6	6

Concrete Object

Test Questions

1) $18 \div \ldots=6$
2) $15 \div \ldots=5$
3) $90 \div \ldots=10$
4) $25 \div \ldots=5$
5) $14 \div \ldots=2$
6) $5 \div \ldots=5$
7) $30 \div \ldots=10$
8) $40 \div \ldots=5$
9) $22 \div \ldots=2$
10) $100 \div \ldots=10$
11) $2=8 \div$ \qquad
12) $10=40 \div$ \qquad
13) $10=110 \div$
14) $5=5 \div$ \qquad

Find the Missing Number

1) $2 \times 4=16 \div ?$

Word Problem

2×4 is equal to or the same value as $16 \div ?$
or $16 \div ?$ is equal to or the same value as $\begin{array}{llll}2 & \mathbf{x} & 4\end{array}$

Strategy Applied

$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Step 1

Out of the two number sentences, calculate the number sentence with all the known numbers first, $2 \mathbf{x} 4$.
Apply step counting to calculate the product of two times four.
First, find and touch the number zero on a number line.
Then, count forwards two more aloud in number order, four times whilst touching the numbers on the number line, $2,4,6,8$.

Step 2
If $2 \mathbf{x}=8$, then $8=16 \div ?$, as they are the same value Use the inverse of division, which is multiplication, $8 \mathbf{x}$? $=16$ Apply step counting to calculate the missing number, by counting on in lots of eight up to sixteen.
First, find and touch the number zero on a number line.
Then, count forwards in lots of eight more aloud in number order, whilst touching the numbers on the number line, up to the number sixteen.
Finally, two lots of eight equals to sixteen.

Step 1

Step 2

Test Questions

1) $2 \times 4=16 \div$ \qquad
2) $5 \times 2=\ldots \div 10$
3) $2 \times 1=\ldots \div 2$
4) $1 \times 8=40 \div$ \qquad
5) $2 \times 3=\ldots \div 2$
6) $2 \times 10=\ldots \div 2$
7) $10 \times 1=100 \div$
8) $60 \div \ldots=5 \times 6$
9) $30 \div \ldots=5 \times 3$
10) $16 \div \ldots=2 \times 4$
11) $6 \div \ldots=1 \times 3$
12) $4 \div \ldots=2 \times 1$
13) $40 \div \ldots=5 \times 4$
14) $60 \div \ldots=3 \times 10$

Fraction of a Quantity

1) $\frac{1}{2}$ of $16=?$

Word Problem

Grandad bought a bag of 16 cherries.
Grandad ate half of the number of cherries in the bag.
How many cherries did Grandad eat?

Concrete Object

First

Then
Next

Finally

$$
\frac{1}{2} \text { of } 16=\underline{8}
$$

Strategy Applied

A fraction is part of a whole or part of 1 and a half is 1 of 2 equal groups. 16 is the quantity shared equally between the total number of equal groups.
2 is the denominator, represents the total number of equal groups. 1 is the numerator, represents one of the equal groups.
First, pick up sixteen objects and place them together. Now count aloud to check there are only sixteen objects; $1,2,3,4,5,6,7,8,9,10,11,12,13$, $14,15,16$.
Then, share the sixteen objects one at a time equally between the two groups, until exactly the same quantity of objects are in each of the groups Next, count how many objects there are altogether in one group, there should be five objects; one, two, three, four, five, six, seven, eight. Finally, one half of sixteen equals eight.

Part Whole Model

16	
8	8

Test Questions

1) $\frac{1}{2}$ of $16=$
2) $\frac{1}{3}$ of $9=$
3) $\frac{1}{2}$ of $6=$
4) $\frac{1}{3}$ of $18=$ \qquad
5) $\frac{1}{4}$ of $12=$ \qquad
6) $\frac{2}{4}$ of $8=$
7) $\frac{1}{2}$ of $18=$
8) $\frac{3}{4}$ of $20=$ \qquad
9) $\quad=\frac{1}{2}$ of 24
10) $\quad=\frac{1}{4}$ of 20

Fraction of a Quantity

1) $\frac{3}{5}$ of $10=?$

Word Problem

Mrs O'Neal shared ten stickers equally between five children.
How many stickers did three of the children get in altogether?

Concrete Object

Strategy Applied

A fraction is part of a whole or part of $\mathbf{1}$ and a fifth is 1 of 5 equal groups. 10 is the quantity shared equally between the total number of equal groups.
5 is the denominator, represents the total number of equal groups.
3 is the numerator, represents three of the equal groups.
First, pick up ten objects and place them together. Now count aloud to check there are only ten objects; $1,2,3,4,5,6,7,8,9,10$.
Then, share the ten objects one at a time equally between the five groups, until exactly the same quantity of objects are in each of the groups. Next, count how many objects there are altogether in three of the groups, should be six objects; one, two, three, four, five, six.
Finally, three fifths of ten equals six.

Bar Model

Test Questions

1) $\frac{3}{5}$ of $10=$
2) $\frac{1}{2}$ of $2=$
3) $\frac{3}{4}$ of $40=$
4) $\frac{2}{3}$ of $21=$ \qquad
5) $\frac{1}{2}$ of $24=$ \qquad
6) $\frac{2}{3}$ of $18=$ \qquad
7) $\frac{2}{4}$ of $16=$
8) $\frac{1}{2}$ of $20=$ \qquad
9) $\quad=\frac{1}{3}$ of 12
10) $=\frac{1}{4}$ of 8

Fraction of a Quantity

1) $\frac{2}{3}$ of $18=$?

Word Problem

Three adults share eighteen new reading books equally between them.
How many of the books will two of the adults have in altogether?

Concrete Object

Strategy Applied

A fraction is part of a whole or part of $\mathbf{1}$ and a third is 1 of 3 equal groups. 18 is the quantity shared equally between the total number of equal groups.
3 is the denominator, represents the total number of equal groups.
2 is the numerator, represents two of the equal groups.
First, pick up eighteen objects and place them together. Now count aloud to check there are only eighteen objects; $1,2,3,4,5,6,7,8,9,10,11,12,13$, $14,15,16,17,18$.
Then, share the eighteen objects one at a time equally between the three groups, until exactly the same quantity of objects are in each of the groups Next, count how many objects there are altogether in two of the groups, there should be twelve objects; one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve.
Finally, two thirds of eighteen equals twelve.

Bar Model

Test Questions

1) $\frac{2}{3}$ of $18=$
2) $\frac{2}{4}$ of $4=$ \qquad
3) $\frac{3}{4}$ of $24=$
4) $\frac{1}{2}$ of $18=$ \qquad
5) $\frac{2}{3}$ of $30=$ \qquad
6) $\frac{3}{4}$ of $16=$
7) $\frac{1}{2}$ of $=9$
8) $\frac{1}{4}$ of $=5$
9) $\frac{1}{3}$ of $=5$
10) $\frac{3}{4}$ of $=12$

Answers

P. 2		P. 4	P. 6	P. 8	P. 10
1) 1 ten	8 ones	1) $10+8$	1) 4	1) 19	1) 23
2) 2 ten	1 ones	2) $20+1$	2) 6	2) 11	2) 31
3) 3 ten	2 ones	3) $30+2$	3) 13	3) 25	3) 20
4) 4 ten	5 ones	4) $40+5$	4) 20	4) 64	4) 59
5) 5 ten	7 ones	5) $50+7$	5) 25	5) 19	5) 30
6) 6 ten	9 ones	6) $60+9$	6) 34	6) 14	6) 57
7) 7 ten	0 ones	7) $70+0$	7) 58	7) 76	7) 83
8) 8 ten	3 ones	8) $80+3$	8) 87	8) 50	8) 60
9) 9 ten	4 ones	9) $90+4$	9) 100	9) 91	9) 109
10) 9 ten	9 ones	10) $90+9$	10) 101	10) 105	10) 130
11) 0 ten	1 ones	11) $0+1$	11) 112	11) 85	11) 30
12) 0 ten	6 ones	12) $0+6$	12) 122	12) 59	12) 55
13) 1 ten	ones	13) $10+1$	13) 14	13) 102	13) 93
14) 2 ten	0 ones	14) $20+0$	14) 39	14) 111	14) 110
P. 12	P. 14	P. 16	P. 18		P. 20
1) 28	1) 8	1) 9	1) 8,10		1) 39
2) 108	2) 6	2) 24	2) 24,26		2) 94
3) 50	3) 4	3) 12	3) 38,40		3) 92
4) 74	4) 2	4) 36	4) 74,76		4) 89
5) 90	5) 1 p	5) 70	5) 12,15		5) 85
6) 90	6) $3 p$	6) 100	6) 24,27		6) 68
7) 117	7) $£ 60$	7) 17 p	7) 33, 36		7) 81
8) 76	8) $£ 80$	8) 18	8) 42,45		8) 100 cm
9) 92	9) 10	9) 9 cm	9) 50,55		9) 100 m
10) 109	10) 20	10) 15 m	10) 55,60		10) $£ 68$
11) 90	11) 90	11) 22	11) 70,75		11) 76
12) 97	12) 50	12) 45	12) 100,		12) 100
13) 120	13) 70	13) 25	13) 120,		13) 72
14) 130	14) 30	14) 90	14) 150,		14) 91

Answers

P. 22	P. $\mathbf{2 4}$	$\underline{\text { P. } \mathbf{2 4}}$	$\underline{\text { P. } \mathbf{2 6}}$	$\underline{\text { P. 28 }}$
1) 29	1) 31	11) 45	1) 6	1) 2
2) 62	2) 44	12) 83	2) 20	2) 3
3) 35	3) 82	13) 94	3) 80	3) 5
4) 42	4) 39	14) 91	4) 7	4) 8
5) 105	5) 45	15) 77	5) 39	5) 10
6) 210	6) 68	16) 80	6) 50	6) 6
7) 157	7) 71	17) 83	7) 4	7) 15
8) 65 p	8) 80	18) 102	8) 31 L	8) 4 mm
9) 90 p	9) 70	19) 102	9) 40 cm	9) 6 cm
10) 97 m	10) 58	20) 70	10) 25 p	10) 14 m
11) $£ 129$			11) 12 mm	11) 26
12) $£ 179$			12) 93 m	12) 20
13) 36			13) 18	13) 52
14) 83			14) 97	14) 30 km

P. 30	P. 32	P. 34	P. 36	P. 38
1) 12	1) 10	1) 71	1) 5	1) 1
2) 6	2) 20	2) 56	2) 4	2) 2
3) 47	3) 42	3) 10	3) 3	3) 3
4) 9 secs	4) 60	4) 34	4) 1	4) 13
5) 5 secs	5) 83	5) 8	5) $6 p$	5) 13
6) 84 mins	6) 10	6) 40	6) $4 p$	6) 20
7) 74 mins	7) 36	7) 23	7) 82 p	7) 24
8) 43	8) 50 g	8) 10	8) $£ 71$	8) 39
9) 2 hrs	9) 73 g	9) 12	9) $£ 90$	9) 46
10) 1 hrs	10) 99 kg	10) 40	10) $£, 58$	10) 58
11) 25	11) 110 kg	11) 16	11) 68	11) 0
12) 41	12) 147	12) 19	12) 45	12) 10
13) 53	13) 170	13) 10	13) 56	13) 43
14) 54	14) 191	14) 38	14) 32	14) 20

Answers

P. $\mathbf{4 0}$	$\underline{\text { P. } \mathbf{4 2}}$	$\underline{\text { P. } \mathbf{4 4}}$	$\underline{\text { P. } \mathbf{4 6}}$	$\underline{\text { P. } \mathbf{4 8}}$	$\underline{\text { P. } \mathbf{4 8}}$
1) 6,4	1) 39	1) 14	1) 8	1) 37	11) 26
2) 22,20	2) 14	2) 40	2) 47	2) 17	12) 13
3) 34,32	3) 3	3) 22	3) 41	3) 11	13) 11
4) 54,52	4) 29	4) 8	4) 44	4) 26	14) 15
5) 9,6	5) 11	5) 30	5) 6	5) 13	15) 3
6) 18,15	6) 14	6) 44	6) 42	6) 14	16) 14
7) 27,24	7) 20	7) 11	7) 35	7) 29	17) 29
8) 33,30	8) 26	8) 59	8) 10	8) 14	18) 14
9) 5,0	9) 13	9) 2	9) 40	9) 20	19) 20
10) 15,10	10) 28	10) 50	10) 53	10) 28	20) 28
11) 45,40	11) 32	11) 43	11) 8		
12) 10,0	12) 36	12) 55	12) 81		
13) 70,60	13) 32	13) 56	13) 70		
14) 170,160	14) 64	14) 58	14) 13		

P. 50	P. 52	P. 54	P. 56	P. 58	P. 60	P. 62
1) 15	1) 6	1) 5	1) 3	1) 2	1) 2	1) 8
2) 60	2) 8	2) 10	2) 7	2) 3	2) 100	2) 3
3) 20	3) 24	3) 5	3) 12	3) 9	3) 4	3) 3
4) 80	4) 16	4) 6	4) 9	4) 5	4) 5	4) 6
5) 45	5) 24	5) 9	5) 9	5) 7	5) 12	5) 3
6) 24	6) 12	6) 10	6) 11	6) 1	6) 40	6) 4
7) 110	7) 36	7) 30	7) 8	7) 3	7) 10	7) 9
8) 30	8) 27	8) 5	8) 8	8) 8	8) 2	8) 15
9) 35	9) 30	9) 7	9) 11	9) 11	9) 2	9) 12
10) 14	10) 40	10) 4	10) 10	10) 10	10) 2	10) 5
11) 30	11) 44	11) 12	11) 12	11) 4	11) 2	
12) 22	12) 21	12) 9	12) 12	12) 4	12) 2	
13) 20	13) 36	13) 10	13) 8	13) 11	13) 2	
14) 120	14) 28	14) 12	14) 12	14) 1	14) 2	

Answers

P. $\mathbf{6 4}$ 1) 6	P. $\mathbf{6 6}$ 1) 12 2) 1	2) 2 3) 30
3) 18		
4) 14	4) 9	
5) 12	5) 20	
6) 12	6) 12	
7) 8	7) 18	
8) 10	8) 20	
9) 4	9) 15	
10) 2	10) 16	

Glossary

Amount is something that has a numerical value, for e.g. 10 cubes

Bar Model is a pictorial representation of a number sentence in the form of bars or boxes used to solve number problems.

Column is a vertical arrangement for example, in a table the cells arranged vertically.

Column Place Value is the value of a digit that relates to its position or place in a number within a column.

Concrete Objects are objects that can be handled and manipulated to support understanding of the structure of a mathematical concept. Materials such as Dienes(Base 10 materials), Cuisenaire, Numicon, are all examples of concrete objects.

Denominator is the number written below the line i.e. the divisor. e.g. in the fraction $2 / 3$ the denominator is 3 .

Digit is one of the symbols of a number system most commonly the symbols $0,1,2,3,4,5,6,7,8$ and 9 . Examples: the number 29 is a 2 -digit number; there are three digits in 2.95 . The position or place of a digit in a number conveys its value.

Digit Value is the value of a digit that relates to its position or place in a number. e.g. in 82 the digits represent 8 tens and 2 ones.

Dividend in division, is the number that is divided. e.g. in $15 \div 3,15$ is the dividend.

Divisor is the number by which another is divided. e.g. In the calculation $30 \div 6=5$, the divisor is 6 . In this example, 30 is the dividend and 5 is the quotient.

Glossary

Efficient Methods A means of calculation (which can be mental or written) that achieves a correct answer with as few steps as possible.
In written calculations this often involves setting out calculations in a columnar layout.

Equals is the symbol: $=$, read as 'is equal to' or 'equals'. and meaning 'having the same value as'. e.g. $7-2=4+1$ since both expressions, $7-2$ and $4+1$ have the same value, 5 .

Expanded Form is a way to break up a number to show the value of each digit (Partition).

Fraction is the result of dividing one integer by a second integer, which must be non- zero. The dividend is the numerator and the non-zero divisor is the denominator. See also decimal fraction, equivalent fraction, improper fraction, proper fraction, unit fraction and vulgar fraction.

Formal Written Method is the way of setting out working in columnar form. In addition and subtraction, the formal written methods can be referred to as expanded and column addition and/or subtraction. In multiplication, the formal written methods are called short or long multiplication depending on the size of the numbers involved. Similarly in division the formal written methods are called short or long division.

Grid a lattice created with two sets of parallel lines. Lines in each set are usually equally spaced. If the sets of lines are at right angles and lines in both sets are equally spaced, a square grid is created.

Hundred Square is a 10 by 10 square grid numbered 1 to 100 . A similar grid could be numbered as a $0-99$ grid.

Inverse is the opposite or reverse operation.

Glossary

Mental Calculations refer to calculations that are largely carried out mentally, but may be supported with a few simple written jottings.

Multiple is the result of multiplying a number by an integer, e.g. 12 is a multiple of 3 because $3 \times 4=12$.

Multiplicand is a number to be multiplied by another.
e.g. in $6 \times 4,4$ is the multiplier as it is how many lots/groups of 6 .

Multiplier is a number to be multiplied by another.
e.g. in 5×3, 5 is the multiplicand as it is the number to be multiplied by 3 .

Number Bond is a pair of numbers with a particular total.

Number Line is a line where numbers are represented by points upon it.

Number Sentence is a mathematical sentence involving numbers. e.g. $3+6=9$ and $9>3$

Numerator is the number written on the top- the dividend (the part that is divided). In the fraction $2 / 3$, the numerator is 2 .

Operations that, when they are combined, leave the entity on which they operate unchanged. Examples: addition and subtraction are inverse operations e.g. $5+6-6=5$. Multiplication and division are inverse operations e.g. $6 \times 10 \div 10=6$.

Part Whole Model is a pictorial representation of the relationship between a number or number sentence and its component parts.

Glossary

Partition 1) To separate a set into subsets. 2) To split a number into component parts. e.g. the two-digit number 38 can be partitioned into $30+8$ or $19+19.3$) A model of division. e.g. $21 \div 7$ is treated as 'how many sevens in 21 ?'

Pictorial Representations do enable learners to use pictures and images to represent the structure of a mathematical concept.
The pictorial representation may build on the familiarity with concrete objects. e.g. a square to represent a Dienes 'flat' (representing 100). Pupils may interpret pictorial representations provided to them or create a pictorial representation themselves to help solve a mathematical problem.

Place Holder In decimal notation, the zero numeral is used as a place holder to denote the absence of a power of 10 .

Place Value is the value of a digit that relates to its position or place in a number. e.g. in 1482 the digits represent 1 thousand, 4 hundred, 8 tens and 2 ones respectively; in 12.34 the digits represent 1 ten, 2 ones, 3 tenths and 4 hundredths respectively.

Product is the result of multiplying one number by another.
e.g. the product of 2 and 3 is 6 since $2 \times 3=6$.

Quotient is the result of a division. e.g. $46 \div 3=151 / 3$ and $151 / 3$ is the quotient of 46 by 3 . Where the operation of division is applied to the set of integers, and the result expressed in integers.
e.g. $46 \div 3=15$ remainder 1 then 15 is the quotient of 46 by 3 and 1 is the remainder.

Glossary

Regrouping is to exchange a number for another of equal value. The process of regrouping is used in some standard compact methods of calculation. e.g.: 'carrying figures/exchanging' in addition, multiplication or division; and 'decomposition' in subtraction.

Remainder in the context of division requiring a whole number answer (quotient), the amount remaining after the operation.
e.g. 29 divided by $7=4$ remainder 1 .

Repeated Addition is the process of repeatedly adding the same number or amount. One model for multiplication. e.g. $5+5+5+5=5 \times 4$.

Repeated Subtraction is The process of repeatedly subtracting the same number or amount. One model for division.
e.g. $20-5-5-5-5=0$ so $20 \div 4=5$ remainder 0 .

Sequence is succession of terms formed according to a rule. There is a definite relation between one term and the next and between each term and its position in the sequence. e.g. $0,4,8,12,16$ etc.

Step Counting is the process of repeatedly adding the same number or amount. One model for multiplication. e.g. $5+10+15+20=5 \times 4$.

Total Value is the sum to a calculation.

Zero in a place value system, a place-holder. e.g. 105

